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Recruitment
• Quantum Matter Theory Group at IoP, AS
• We welcome postdocs, assistants, and students to join us
• Welcome to share the information!



In this class …
• goal: concept of quantum transport
• materials: 

• single-particle regime: 
• Douglas Natelson, Nanostructures and nanotechnology (Sec. 6.4)

(unfortunately some typos …)
• Supriyo Datta, Electronic Transport in Mesoscopic Systems 

(older but still useful)
• beyond the single-particle regime: 

• Thierry Giamarchi, Quantum Physics in One Dimension 
• additional references on interacting 1D systems

• warning: inconsistent notations from different sources 
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Outline

• Review of useful concepts from quantum mechanics
• Quantum transport in mesoscopic systems

• Landauer-Büttiker formalism (single-particle description)
• conductance quantization in ballistic systems
• Landauer formula for an imperfect conductor 
• Büttiker formula for multiterminal devices 
• application

• interacting systems (beyond single-particle regime)
• interacting electrons in 1D: Tomonaga-Luttinger liquid
• impurities (weak and strong)
• effects of spin-orbit-coupling  
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• Ohm’s law:

R : resistance, V : voltage, I :  current 
• resistance (geometry) vs resistivity (material) 

𝜌𝜌 : resistivity, L : length of a conductor, A : cross-section area

• question: what if we shrink the conductor (A↘ ) so that there can be only 
few electrons passing through it at a time? 

• typical length scales ∼ 𝑂𝑂(100 nm) ⇒ comparable to the size of coronavirus!
• recall: how electrons move in simple 1D potential

Charge transport in macroscopic devices

V R

I

I

𝑉𝑉 = 𝐼𝐼𝐼𝐼

𝐼𝐼 = 𝜌𝜌
𝐿𝐿
𝐴𝐴 Wikipedia page of Ohm’s law
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Electron tunneling through a barrier

• Schrödinger equation with effective 𝑚𝑚 :

• for time-independent potential:
• tunneling through a barrier with square potential (height 𝑉𝑉0 and width 2𝑎𝑎) 

− ℏ2

2𝑚𝑚
𝜕𝜕𝑥𝑥2 + 𝑉𝑉 𝑥𝑥 𝜙𝜙 𝑥𝑥 = 𝐸𝐸 𝜙𝜙(𝑥𝑥)

general solution for E < 𝑉𝑉0 : 

𝜙𝜙 𝑥𝑥 = �
Aei𝑘𝑘𝑥𝑥 + 𝐵𝐵e−i𝑘𝑘𝑥𝑥, 𝑥𝑥 < −𝑎𝑎,
𝐶𝐶e𝛾𝛾𝑥𝑥 + 𝐷𝐷e−𝛾𝛾𝑥𝑥, −𝑎𝑎 < 𝑥𝑥 < 𝑎𝑎,
𝐹𝐹ei𝑘𝑘𝑥𝑥 + 𝐺𝐺e−i𝑘𝑘𝑥𝑥, 𝑥𝑥 > 𝑎𝑎,

𝑘𝑘 =
2𝑚𝑚𝐸𝐸
ℏ2

, 𝛾𝛾 =
2𝑚𝑚(𝑉𝑉0 − 𝐸𝐸)

ℏ2
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[note] typo in Fig. 6.14

𝑖𝑖ℏ𝜕𝜕𝑡𝑡𝜓𝜓 𝑥𝑥, 𝑡𝑡 = −
ℏ2

2𝑚𝑚
𝜕𝜕𝑥𝑥2 + 𝑉𝑉 𝑥𝑥 𝜓𝜓 𝑥𝑥, 𝑡𝑡



Tunneling through a barrier
• boundary conditions: continuous 𝜙𝜙(𝑥𝑥) and 𝜕𝜕𝑥𝑥𝜙𝜙 𝑥𝑥 at 𝑥𝑥 = ±𝑎𝑎 :

• transfer matrix M : describing how a particle tunnels through the barrier
• diagonal terms: transmission through the barrier

⇒ related to charge current 

𝐴𝐴
𝐵𝐵 =

𝑖𝑖𝑘𝑘+𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎 𝑖𝑖𝑘𝑘−𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎

𝑖𝑖𝑘𝑘−𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒−(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎 𝑖𝑖𝑘𝑘+𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒−(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎
𝐶𝐶
𝐷𝐷 , 𝐶𝐶𝐷𝐷 =

𝑖𝑖𝑘𝑘+𝛾𝛾
2𝛾𝛾

𝑒𝑒(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎 − 𝑖𝑖𝑘𝑘−𝛾𝛾
2𝛾𝛾

𝑒𝑒(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎

− 𝑖𝑖𝑘𝑘−𝛾𝛾
2𝛾𝛾

𝑒𝑒−(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎 𝑖𝑖𝑘𝑘+𝛾𝛾
2𝛾𝛾

𝑒𝑒−(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎
𝐹𝐹
𝐺𝐺

⇒ 𝐴𝐴
𝐵𝐵 = 𝑴𝑴 𝐹𝐹

𝐺𝐺 , 𝑴𝑴 = 𝑀𝑀11 𝑀𝑀12
𝑀𝑀21 𝑀𝑀22

=
𝑖𝑖𝑘𝑘+𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎 𝑖𝑖𝑘𝑘−𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎

𝑖𝑖𝑘𝑘−𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒−(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎 𝑖𝑖𝑘𝑘+𝛾𝛾
2𝑖𝑖𝑘𝑘

𝑒𝑒−(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎

𝑖𝑖𝑘𝑘+𝛾𝛾
2𝛾𝛾

𝑒𝑒(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎 − 𝑖𝑖𝑘𝑘−𝛾𝛾
2𝛾𝛾

𝑒𝑒(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎

− 𝑖𝑖𝑘𝑘−𝛾𝛾
2𝛾𝛾

𝑒𝑒−(𝑖𝑖𝑘𝑘+𝛾𝛾)𝑎𝑎 𝑖𝑖𝑘𝑘+𝛾𝛾
2𝛾𝛾

𝑒𝑒−(𝑖𝑖𝑘𝑘−𝛾𝛾)𝑎𝑎
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Current density and transmission coefficient 
• particle current density from quantum mechanics:

𝐽𝐽 =
ℏ
2𝑚𝑚𝑖𝑖

𝜙𝜙∗𝜕𝜕𝑥𝑥𝜙𝜙 − 𝜙𝜙𝜕𝜕𝑥𝑥𝜙𝜙∗

• left side of the barrier (𝑥𝑥 < −a):

𝐽𝐽< =
ℏ𝑘𝑘
𝑚𝑚

( 𝐴𝐴 2 − 𝐵𝐵 2)
• right side of the barrier (𝑥𝑥 > a):

𝐽𝐽> =
ℏ𝑘𝑘
𝑚𝑚

( 𝐹𝐹 2 − 𝐺𝐺 2)
• for a particle coming from 𝑥𝑥 = −∞ (𝐺𝐺 → 0), the probability that it passes 

through the barrier and that it gets reflected:

𝑇𝑇 𝐸𝐸 ≡ 𝐹𝐹 2/ 𝐴𝐴 2 = 1/ 𝑀𝑀11
2,     𝐼𝐼 𝐸𝐸 ≡ 𝐵𝐵 2/ 𝐴𝐴 2

• current related to transmission probability and element of M 
9



Transmission coefficient

• nonzero probability for 𝐸𝐸 < 𝑉𝑉0 (classically forbidden regime)
• weak-tunneling regime (a wide and/or tall barrier, 𝛾𝛾𝑎𝑎 ≫ 1)

𝑇𝑇 𝐸𝐸 ≈
4𝐸𝐸 𝑉𝑉0 − 𝐸𝐸

𝑉𝑉02
𝑒𝑒−

4𝑎𝑎
ℏ 2𝑚𝑚 𝑉𝑉0−𝐸𝐸 ∝ 𝑒𝑒−

4𝑎𝑎
ℏ 2𝑚𝑚 𝑉𝑉0−𝐸𝐸

⇒ exponential dependence on the barrier thickness 
⇒ sensitivity useful for STM/STS

𝐸𝐸 < 𝑉𝑉0 ∶ 𝑇𝑇 𝐸𝐸 =
1

1 + 𝑉𝑉02
4𝐸𝐸 𝑉𝑉0 − 𝐸𝐸 sinh2 2𝑎𝑎

ℏ 2𝑚𝑚(𝑉𝑉0 − 𝐸𝐸)

𝐸𝐸 > 𝑉𝑉0 ∶ 𝑇𝑇 𝐸𝐸 =
1

1 + 𝑉𝑉02
4𝐸𝐸 𝐸𝐸 − 𝑉𝑉0

sin2 2𝑎𝑎
ℏ 2𝑚𝑚(𝐸𝐸 − 𝑉𝑉0)
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[note] typo in Eq. (6.43)



Double-barrier tunneling

𝐴𝐴
𝐵𝐵 = 𝑴𝑴𝑳𝑳

𝐹𝐹
𝐺𝐺 , 𝐹𝐹

𝐺𝐺 = 𝑴𝑴𝑾𝑾
𝐴𝐴𝐴
𝐵𝐵𝐴

, 𝐴𝐴𝐴
𝐵𝐵𝐴

= 𝑴𝑴𝑹𝑹
𝐹𝐹𝐴
𝐺𝐺𝐴

• 𝑴𝑴𝑳𝑳(𝑹𝑹) : tunneling through the left (right) barrier 

• 𝑴𝑴𝑾𝑾 : propagation in the well with inter-barrier distance b   𝑴𝑴𝑾𝑾 = 𝑒𝑒−𝑖𝑖𝑘𝑘𝑖𝑖 0
0 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖
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Double-barrier tunneling (conti.)

• total transmission coefficient

𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑴𝑴𝑳𝑳𝑴𝑴𝑾𝑾𝑴𝑴𝑹𝑹, 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡(𝐸𝐸) = 1/ 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡,11
2

• resonance condition with transmission probability = 1 
• generalized for multiple barriers via multiplication of M matrix

12

[note] typo in Eq. (6.50)



Scattering matrix formalism
• instead of expressing 𝜙𝜙(𝑥𝑥) for 𝑥𝑥 < −𝑎𝑎 in terms of that for 𝑥𝑥 > 𝑎𝑎 , we 

can express the outgoing wave in terms of the incoming wave

• the role of 𝑴𝑴 replaced by the scattering matrix S
• transmission probability in terms of the element of S : 𝑇𝑇(𝐸𝐸) = 𝑆𝑆12 2

𝐴𝐴
𝐵𝐵 = 𝑴𝑴 𝐹𝐹

𝐺𝐺 , 𝑴𝑴 = 𝑀𝑀11 𝑀𝑀12
𝑀𝑀21 𝑀𝑀22

⇒ 𝐵𝐵
𝐹𝐹 = 𝑺𝑺 𝐴𝐴

𝐺𝐺 , 𝑺𝑺 = 𝑆𝑆11 𝑆𝑆12
𝑆𝑆21 𝑆𝑆22
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Two scattering regions

14

• combining scattering matrices in regions 1 & 2:
𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑺𝑺(1) ⊗𝑺𝑺(1−2) ⊗ 𝑺𝑺(2)

• 𝑺𝑺(1−2): how regions 1 & 2 are connected 
• ⊗: combining 𝑺𝑺(1) & 𝑺𝑺(2) in a way depending on their coherence  

• full coherence: combining amplitudes (elements of 𝑺𝑺)

given 
𝑟𝑟1 𝑡𝑡1𝐴
𝑡𝑡1 𝑟𝑟1𝐴

and 
𝑟𝑟2 𝑡𝑡2𝐴
𝑡𝑡2 𝑟𝑟2𝐴

⇒ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑡𝑡1𝑡𝑡2
1−𝑟𝑟1′𝑟𝑟2

2
= 𝑇𝑇1𝑇𝑇2

1−2 𝑅𝑅1𝑅𝑅2 cos 𝜃𝜃+𝑅𝑅1𝑅𝑅2
(resonance!)

𝑇𝑇1,2 = 𝑡𝑡1,2
2 = 𝑡𝑡𝐴1,2

2 𝐼𝐼1,2 = 𝑟𝑟1,2
2 = 𝑟𝑟𝐴1,2

2

𝜃𝜃 = phase 𝑟𝑟1′ + phase (𝑟𝑟2)
• complete decoherence: probability instead of amplitude

given 𝐼𝐼1 𝑇𝑇1
𝑇𝑇1 𝐼𝐼1

and 
𝐼𝐼2 𝑇𝑇2
𝑇𝑇2 𝐼𝐼2

⇒ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡= 𝑇𝑇1𝑇𝑇2
1−𝑅𝑅1𝑅𝑅2

(no resonance)

• partial coherence: modeling with fictitious leads 



Scattering matrix for multiple modes

• matrix S : unitary (ensured by current conservation)
• transmission from mode 𝑛𝑛 to mode 𝑚𝑚 :  𝑇𝑇𝑚𝑚←𝑛𝑛 = 𝑆𝑆𝑚𝑚←𝑛𝑛

2

• important concept for the development of Büttiker formula 

𝑺𝑺 =
𝑆𝑆11 ⋯ 𝑆𝑆1𝑁𝑁
⋮ ⋱ ⋮
𝑆𝑆𝑁𝑁1 ⋯ 𝑆𝑆𝑁𝑁𝑁𝑁
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Outline

• Review of useful concepts from quantum mechanics
• Quantum transport in mesoscopic systems

• Landauer-Büttiker formalism (single-particle description)
• conductance quantization in ballistic systems
• Landauer formula for an imperfect conductor 
• Büttiker formula for multiterminal devices 
• application

• interacting systems (beyond single-particle regime)
• interacting electrons in 1D: Tomonaga-Luttinger liquid
• impurities (weak and strong)
• effects of spin-orbit-coupling  
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Transport through a ballistic conductor
• ballistic conductor: 

a 1D or (quasi-1D) system with length 𝐿𝐿 much shorter than the mean free path 
of carriers (no scattering inside)

• quantum coherent scattering region connected via contacts to 
classical reservoirs

• no reflection within the conductor 
⇒ transmission probability = 1 

17



• Q1D conductor with 𝑀𝑀 transverse modes 
• at 𝑇𝑇 = 0: electrons filled up to 𝜇𝜇𝐿𝐿 (𝜇𝜇𝑅𝑅) in the left (right) contact
• number of modes with energies 𝐸𝐸𝑗𝑗 < 𝐸𝐸 : 𝑀𝑀 𝐸𝐸 = ∑𝑗𝑗 Θ 𝐸𝐸 − 𝐸𝐸𝑗𝑗
• 𝑀𝑀 = 3 here 18

Electric conductance of a ballistic conductor



• difference in 𝜇𝜇𝐿𝐿 and 𝜇𝜇𝑅𝑅 set by a bias 
• occupation prob. for right-moving carriers

• current from left to right:

• occupation prob. for left-moving carriers

• current in the opposite direction (from right to left):

𝑓𝑓+(𝐸𝐸,𝑇𝑇, 𝜇𝜇𝐿𝐿)

𝐼𝐼+ = −
𝑒𝑒
𝐿𝐿�

𝑘𝑘

𝑣𝑣 𝐸𝐸 𝑘𝑘 𝑓𝑓+ 𝐸𝐸,𝑇𝑇, 𝜇𝜇𝐿𝐿 𝑀𝑀 𝐸𝐸 𝑘𝑘 → −
2𝑒𝑒
ℎ �

0

∞
𝑑𝑑𝐸𝐸 𝑓𝑓+ 𝐸𝐸,𝑇𝑇, 𝜇𝜇𝐿𝐿 𝑀𝑀 𝐸𝐸

𝑓𝑓−(𝐸𝐸,𝑇𝑇, 𝜇𝜇𝑅𝑅)

𝐼𝐼− = −
𝑒𝑒
𝐿𝐿�

𝑘𝑘

𝑣𝑣 𝐸𝐸 𝑘𝑘 𝑓𝑓− 𝐸𝐸,𝑇𝑇, 𝜇𝜇𝑅𝑅 𝑀𝑀 𝐸𝐸 𝑘𝑘 → −
2𝑒𝑒
ℎ �

0

∞
𝑑𝑑𝐸𝐸 𝑓𝑓− 𝐸𝐸,𝑇𝑇, 𝜇𝜇𝑅𝑅 𝑀𝑀 𝐸𝐸

𝑉𝑉 = 𝜇𝜇𝐿𝐿−𝜇𝜇𝑅𝑅
−𝑒𝑒
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• net current at T = 0 : 

• 2-terminal conductance of a 𝑀𝑀-channel ballistic conductor:

• contact resistance: 1/𝐺𝐺 = ℎ
2𝑒𝑒2

1
𝑀𝑀

• physical meaning: 
resistance arising from the process where most of the electron wave packet from a 3D 
reservoir (a large number of modes) gets reflected when trying to enter a Q1D conductor 
(a few conduction modes) ⇒ the contact resistance arises at the interface!

• apart from the number of channels, the contact resistance is given by 
universal constants (independent of material parameters)!

𝐼𝐼 = 𝐼𝐼+ − 𝐼𝐼− = −
2𝑒𝑒
ℎ �

0

∞
𝑑𝑑𝐸𝐸[ 𝑓𝑓+ 𝐸𝐸,𝑇𝑇, 𝜇𝜇𝐿𝐿 − 𝑓𝑓− 𝐸𝐸,𝑇𝑇, 𝜇𝜇𝑅𝑅 ]𝑀𝑀 𝐸𝐸

= −2𝑒𝑒
ℎ
𝑀𝑀 𝜇𝜇𝐿𝐿 − 𝜇𝜇𝑅𝑅 = 2𝑒𝑒2

ℎ
𝑀𝑀𝑉𝑉

𝐺𝐺 =
𝑑𝑑𝐼𝐼
𝑑𝑑𝑉𝑉

=
2𝑒𝑒2

ℎ 𝑀𝑀
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Conductance quantization in mesoscopic devices 
• formation of conductance plateaus at 𝐺𝐺 = 2𝑒𝑒2

ℎ
× 𝑀𝑀

• observed in a gate-defined quantum point contact (QPC) formed in semiconductors
• voltage applied to gates to pinch off the constriction

• lowest plateau: anomaly at 0.7 × 2𝑒𝑒2

ℎ

• macroscopic scale: 𝐺𝐺 = 𝜎𝜎𝜎𝜎/𝐿𝐿 vs mesoscopic scale: 𝐺𝐺 = 2𝑒𝑒2

ℎ
× 𝑀𝑀

van Wees et al., PRL 60, 848 (1988)           Wharam et al., J. Phys. C: Sol. State Phys. 21, L209 (1988)
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Additional features on top of quantization

• uniformly reduced conductance plateau(s)
⇒ e-e interaction + disorder (discussed later)  

• shoulder-like feature at 0.7 × 2𝑒𝑒2

ℎ
in the lowest plateau 

⇒ 0.7 anomaly (spin effects? e-e interaction? fractionalization?)

Tarucha et al., Sol. State. Commun. 94, 413 (1995)      Thomas et al., PRL 77, 135 (1996)
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• for an imperfect conductor with multiple transverse modes
• 2-terminal conductance of a 𝑀𝑀-channel imperfect conductor:

• �𝑇𝑇: transmission coefficient through a scatterer/impurity 
(assumed to be energy-independent between 𝜇𝜇𝐿𝐿 and 𝜇𝜇𝑅𝑅)

• resistance of a conductor containing a scatterer:

1/𝐺𝐺 = ℎ
2𝑒𝑒2

1
𝑀𝑀�𝑇𝑇

= ℎ
2𝑒𝑒2

1
𝑀𝑀

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
1−�𝑇𝑇
�𝑇𝑇

⇒ total resistance of a “circuit” consisting of contact resistance and scatterer-
induced resistance in series

𝐺𝐺 =
2𝑒𝑒2

ℎ 𝑀𝑀 �𝑇𝑇

Landauer formula
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Resistance contributions from more scatterers
• total resistance of a conductor with a scatterer:

1/𝐺𝐺 = ℎ
2𝑒𝑒2

1
𝑀𝑀�𝑇𝑇

= ℎ
2𝑒𝑒2

1
𝑀𝑀

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
1−�𝑇𝑇
�𝑇𝑇

• how about a conductor containing 2 scatterers?
• probability of a particle passing through both scatterers

(x) �𝑇𝑇1 �𝑇𝑇2
(o) �𝑇𝑇12 = �𝑇𝑇1 �𝑇𝑇2 + �𝑇𝑇1𝐼𝐼2𝐼𝐼1 �𝑇𝑇2 + �𝑇𝑇1𝐼𝐼2𝐼𝐼1𝐼𝐼2𝐼𝐼1 �𝑇𝑇2 + ⋯

= �𝑇𝑇1 �𝑇𝑇2 + �𝑇𝑇1 �𝑇𝑇2𝐼𝐼1𝐼𝐼2 + �𝑇𝑇1 �𝑇𝑇2𝐼𝐼12𝐼𝐼22 + ⋯ = �𝑇𝑇1 �𝑇𝑇2
1

1−𝑅𝑅1𝑅𝑅2
(incoherently)

⇒ 1−�𝑇𝑇12
�𝑇𝑇12

= 1−�𝑇𝑇1
�𝑇𝑇1

+ 1−�𝑇𝑇2
�𝑇𝑇2

• total resistance of a conductor with 2 scatterers: 1/𝐺𝐺 = ℎ
2𝑒𝑒2

1
𝑀𝑀

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
1−�𝑇𝑇1
�𝑇𝑇1

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
1−�𝑇𝑇2
�𝑇𝑇2
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Recovering Ohm’s scaling for a long conductor

• resistance of a 𝑀𝑀-channel conductor with a scatterer:

𝐼𝐼 = ℎ
2𝑒𝑒2

1
𝑀𝑀

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
1−�𝑇𝑇
�𝑇𝑇

• for 2 scatterers:

𝐼𝐼 = ℎ
2𝑒𝑒2

1
𝑀𝑀

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
1−�𝑇𝑇1
�𝑇𝑇1

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
1−�𝑇𝑇2
�𝑇𝑇2

• for a long conductor with many scatterers:

1/𝐺𝐺 = ℎ
2𝑒𝑒2

1
𝑀𝑀

+ ℎ
2𝑒𝑒2

1
𝑀𝑀
∑𝑛𝑛

1−�𝑇𝑇𝑛𝑛
�𝑇𝑇𝑛𝑛

• assuming 𝑁𝑁 scatterers with the same transmission coefficient �𝑇𝑇𝑛𝑛 → �𝑇𝑇1 :
1−�𝑇𝑇𝑁𝑁
�𝑇𝑇𝑁𝑁

= ∑𝑛𝑛
1−�𝑇𝑇𝑛𝑛
�𝑇𝑇𝑛𝑛

→ 𝑁𝑁 1−�𝑇𝑇1
�𝑇𝑇1

⇒ �𝑇𝑇𝑁𝑁 =
�𝑇𝑇1

𝑁𝑁 1−�𝑇𝑇1 +�𝑇𝑇1
→ 𝐿𝐿0

𝐿𝐿+𝐿𝐿0
• resistance of a long conductor with many scatterers: 𝐼𝐼 ∝ ℎ

2𝑒𝑒2
1
𝑀𝑀

1
�𝑇𝑇𝑁𝑁
∝ 𝐿𝐿

𝑊𝑊 25



Effects of disorder on transport
• in realistic systems, disorder or charge impurities are (omni)present
• they induce a random potential

𝑉𝑉dis 𝑥𝑥 = ∑𝑞𝑞 𝑉𝑉dis,𝑞𝑞 𝑒𝑒𝑖𝑖𝑞𝑞𝑥𝑥 , 𝑉𝑉dis,𝑞𝑞: Fourier component of the potential
• coupling to charge density 𝜌𝜌 = ∑𝜎𝜎𝜓𝜓𝜎𝜎

† 𝜓𝜓𝜎𝜎 with the electron field operator 

𝜓𝜓𝜎𝜎 ≈ 𝑒𝑒𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐼𝐼𝜎𝜎 + 𝑒𝑒−𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐿𝐿𝜎𝜎
• entering the Hamiltonian as a perturbation term: 

𝐻𝐻dis = ∫ 𝑑𝑑𝑥𝑥 𝑉𝑉dis 𝑥𝑥 𝜌𝜌 𝑥𝑥

= ∫ 𝑑𝑑𝑥𝑥 𝑉𝑉dis 𝑥𝑥 (𝐼𝐼𝜎𝜎
†𝐼𝐼𝜎𝜎 + 𝐿𝐿𝜎𝜎

† 𝐿𝐿𝜎𝜎 + 𝑒𝑒−2𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐼𝐼𝜎𝜎
†𝐿𝐿𝜎𝜎 + 𝑒𝑒2𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐿𝐿𝜎𝜎

† 𝐼𝐼𝜎𝜎)

⇒ forward scattering of electrons:  𝐼𝐼𝜎𝜎
†𝐼𝐼𝜎𝜎 , 𝐿𝐿𝜎𝜎

† 𝐿𝐿𝜎𝜎 (transmission in “wave description”)

backscattering: 𝐼𝐼𝜎𝜎
†𝐿𝐿𝜎𝜎 , 𝐿𝐿𝜎𝜎

† 𝐼𝐼𝜎𝜎 with scattering strength depending on 𝑉𝑉dis,2𝑘𝑘𝐹𝐹 (reflection) 
26



Microscopic origin of electrical resistance
• backscattering (𝐼𝐼𝜎𝜎

†𝐿𝐿𝜎𝜎 , 𝐿𝐿𝜎𝜎
† 𝐼𝐼𝜎𝜎) in momentum space:

• disorder-induced backscattering in 1D channels 
⇒ origins of electrical resistance and dissipation in electronic devices 

• at low T: Anderson localization of carriers in a long conductor 
• exception: edge transport in quantum Hall states (topological protection)
⇒ remarkable quantization of conductance as a new standard of basic unit

27
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Büttiker formula 

• extending the 2-terminal formula to multiterminal devices:

𝐼𝐼 = 2𝑒𝑒
ℎ
�𝑇𝑇 𝜇𝜇1 − 𝜇𝜇2

→ 𝐼𝐼𝑖𝑖 =
2𝑒𝑒
ℎ
�
𝑗𝑗

(�𝑇𝑇𝑗𝑗←𝑖𝑖 𝜇𝜇𝑖𝑖 − �𝑇𝑇𝑖𝑖←𝑗𝑗 𝜇𝜇𝑗𝑗)

• 𝐼𝐼𝑖𝑖 : net current flowing out of the terminal 𝑖𝑖
• �𝑇𝑇𝑗𝑗←𝑖𝑖 : electron transferred from terminal 𝑖𝑖 to 𝑗𝑗
• relating the multiterminal conductance of a mesoscopic conductor to 

its scattering properties (recall the introduced scattering matrix)
• without asking underlying scattering mechanism(s)

28



Büttiker formula 
• at low T, for multiterminal devices:

𝐼𝐼𝑖𝑖 =
2𝑒𝑒
ℎ
�
𝑗𝑗

(�𝑇𝑇𝑗𝑗←𝑖𝑖 𝜇𝜇𝑖𝑖 − �𝑇𝑇𝑖𝑖←𝑗𝑗 𝜇𝜇𝑗𝑗)

• local chemical potential set by voltages: 

𝐼𝐼𝑖𝑖 = ∑𝑗𝑗(𝐺𝐺𝑗𝑗𝑖𝑖𝑉𝑉𝑖𝑖 − 𝐺𝐺𝑖𝑖𝑗𝑗𝑉𝑉𝑗𝑗) with 𝐺𝐺𝑖𝑖𝑗𝑗 = 2𝑒𝑒2

ℎ
�𝑇𝑇𝑖𝑖←𝑗𝑗

• simplified with a sum rule: ∑𝑗𝑗 𝐺𝐺𝑗𝑗𝑖𝑖 = ∑𝑗𝑗 𝐺𝐺𝑖𝑖𝑗𝑗 (to ensure zero current for identical 𝑉𝑉𝑗𝑗)

⇒ 𝐼𝐼𝑖𝑖 = �
𝑗𝑗

𝐺𝐺𝑖𝑖𝑗𝑗(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗)

• description in terms of measured current and voltage without involving underlying
microscopic transmission or scattering mechanism(s)

29
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Application of the Büttiker formula
• making use of 𝐼𝐼𝑖𝑖 = ∑𝑗𝑗 𝐺𝐺𝑖𝑖𝑗𝑗(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗) at low T

• simplified by setting one of the voltages to zero
• simplified further with the Kirchhoff’s law: ∑𝑗𝑗 𝐼𝐼𝑗𝑗 = 0

• 3-terminal device as an example: 
Q: given an external current 𝐼𝐼 flowing from 3 to 1, measuring 𝑉𝑉

between probes 2 & 3, what is the resistance 𝑉𝑉/𝐼𝐼 ?
• from Büttiker formula: 

𝐼𝐼1
𝐼𝐼2
𝐼𝐼3

=
𝐺𝐺12 + 𝐺𝐺13 −𝐺𝐺12 −𝐺𝐺13
−𝐺𝐺21 𝐺𝐺21 + 𝐺𝐺23 −𝐺𝐺23
−𝐺𝐺31 −𝐺𝐺32 𝐺𝐺31 + 𝐺𝐺32

𝑉𝑉1
𝑉𝑉2
𝑉𝑉3

• let 𝑉𝑉3 = 0, and we know 𝐼𝐼3 from 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 = 0: 
𝐼𝐼1
𝐼𝐼2

= 𝐺𝐺12 + 𝐺𝐺13 −𝐺𝐺12
−𝐺𝐺21 𝐺𝐺21 + 𝐺𝐺23

𝑉𝑉1
𝑉𝑉2
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3-terminal device

Q: what is the resistance 𝑉𝑉/𝐼𝐼?
• inverting the matrix equation:

𝑉𝑉1
𝑉𝑉2

= R 
𝐼𝐼1
𝐼𝐼2

= 𝐺𝐺12 + 𝐺𝐺13 −𝐺𝐺12
−𝐺𝐺21 𝐺𝐺21 + 𝐺𝐺23

−1 𝐼𝐼1
𝐼𝐼2

• the matrix can be inverted straightforwardly
• expressing 𝑉𝑉1,𝑉𝑉2 in terms of matrix elements of R and 𝐼𝐼1, 𝐼𝐼2 :

𝑉𝑉1 = 𝐼𝐼11𝐼𝐼1 + 𝐼𝐼12𝐼𝐼2, 𝑉𝑉2 = 𝐼𝐼21𝐼𝐼1 + 𝐼𝐼22𝐼𝐼2
• 𝑉𝑉/𝐼𝐼 in terms of matrix element(s) of R (which can be expressed in terms of 𝐺𝐺𝑖𝑖𝑗𝑗): 

𝑉𝑉
𝐼𝐼

=
−𝑉𝑉2
−𝐼𝐼1

�
𝐼𝐼2=0

= 𝐼𝐼21
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4-terminal device
• Q: given external current 𝐼𝐼 from 4 to 1, 

measuring 𝑉𝑉 between probes 2 & 3, 
what is the 4-terminal resistance 𝑉𝑉/𝐼𝐼 ?

• again, we have freedom to set 𝑉𝑉4 = 0, 
and we know 𝐼𝐼4 = − 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 :

𝐼𝐼1
𝐼𝐼2
𝐼𝐼3

=
𝐺𝐺12 + 𝐺𝐺13 −𝐺𝐺12 −𝐺𝐺13
−𝐺𝐺21 𝐺𝐺21 + 𝐺𝐺23 −𝐺𝐺23
−𝐺𝐺31 −𝐺𝐺32 𝐺𝐺31 + 𝐺𝐺32

𝑉𝑉1
𝑉𝑉2
𝑉𝑉3

→ 𝑹𝑹−1
𝑉𝑉1
𝑉𝑉2
𝑉𝑉3

• 𝑉𝑉/𝐼𝐼 in terms of matrix element of R : 
𝑉𝑉
𝐼𝐼

=
𝑉𝑉3 − 𝑉𝑉2
−𝐼𝐼1

�
𝐼𝐼2=𝐼𝐼3=0

= 𝐼𝐼21 − 𝐼𝐼31
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Edge conduction in quantum Hall states
• 6-terminal device in a quantum Hall state with M edge modes

• since the bulk is gapped, only (gapless) edge modes can carry current:

𝐺𝐺𝑖𝑖𝑗𝑗 = 2𝑒𝑒2

ℎ
𝑀𝑀, for 𝑖𝑖 ← 𝑗𝑗 = 1 ← 6 , (2 ← 1), (3 ← 2), (4 ← 3), (5 ← 4), (6 ← 5)

𝐺𝐺𝑖𝑖𝑗𝑗 = 0, otherwise

⇒ simplifying the conductance matrix in 𝐼𝐼𝑖𝑖 = ∑𝑗𝑗 𝐺𝐺𝑖𝑖𝑗𝑗(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗)
33



Edge conduction
𝐼𝐼𝑖𝑖 = ∑𝑗𝑗 𝐺𝐺𝑖𝑖𝑗𝑗(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗)
• we set 𝑉𝑉4 = 0:

• inverting the matrix could give solutions, but it is unnecessary
• we note that currents at the voltage terminals are zero: 𝐼𝐼2=𝐼𝐼3=𝐼𝐼4=𝐼𝐼5=0
⇒ 𝑉𝑉2 = 𝑉𝑉3 = 𝑉𝑉1, 𝑉𝑉5 = 𝑉𝑉6 = 0, 𝐼𝐼1 = 𝐺𝐺𝑐𝑐𝑉𝑉1

• longitudinal resistance:  𝐼𝐼𝐿𝐿 = 𝑉𝑉2−𝑉𝑉3
𝐼𝐼1

= 𝑉𝑉6−𝑉𝑉5
𝐼𝐼1

= 0, transport without dissipation!

• Hall resistance: 𝐼𝐼𝐻𝐻 = 𝑉𝑉2−𝑉𝑉6
𝐼𝐼1

= 𝑉𝑉3−𝑉𝑉5
𝐼𝐼1

= ℎ
2𝑒𝑒2𝑀𝑀

, experimentally very precise!
34

𝐼𝐼1
𝐼𝐼2
𝐼𝐼3
𝐼𝐼5
𝐼𝐼6

=

𝐺𝐺𝑐𝑐
−𝐺𝐺𝑐𝑐

0
0
0

0
𝐺𝐺𝑐𝑐
−𝐺𝐺𝑐𝑐

0
0

0
0
𝐺𝐺𝑐𝑐
0
0

0
0
0
𝐺𝐺𝑐𝑐
−𝐺𝐺𝑐𝑐

−𝐺𝐺𝑐𝑐
0
0
0
𝐺𝐺𝑐𝑐

𝑉𝑉1
𝑉𝑉2
𝑉𝑉3
𝑉𝑉5
𝑉𝑉6

,    Gc = 2𝑒𝑒2

ℎ
𝑀𝑀



Outline

• Review of useful concepts from quantum mechanics
• Quantum transport in mesoscopic systems

• Landauer-Büttiker formalism (single-particle description)
• conductance quantization in ballistic systems
• Landauer formula for an imperfect conductor 
• Büttiker formula for multiterminal devices 
• application

• interacting systems (beyond single-particle regime)
• interacting electrons in 1D: Tomonaga-Luttinger liquid
• impurities (weak and strong)
• effects of spin-orbit-coupling  
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Incorporating electron-electron (e-e) interaction in 1D

• only electrons near the Fermi level participates in transport:
𝜓𝜓 ≈ 𝑒𝑒𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐼𝐼 + 𝑒𝑒−𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐿𝐿 (spinless for simplicity)

• effective theory in a 1D channel:

• kinetic energy (linearized spectrum): 

• (screened) Coulomb interaction between electrons 

𝐻𝐻int = ∫ 𝑑𝑑𝑥𝑥 𝑉𝑉ee 𝑥𝑥 𝜌𝜌 𝑥𝑥 𝜌𝜌 𝑥𝑥 ≈ ∫ 𝑑𝑑𝑥𝑥 𝑔𝑔2 𝐼𝐼†𝐼𝐼𝐿𝐿† 𝐿𝐿 + 𝑔𝑔4
2

𝐼𝐼†𝐼𝐼
2

+ 𝐿𝐿† 𝐿𝐿
2

• going beyond the single-particle regime => cannot be diagonalized!

𝐻𝐻kin + 𝐻𝐻int

𝐻𝐻kin + 𝐻𝐻int = −𝑖𝑖ℏ𝑣𝑣𝐹𝐹∫ 𝑑𝑑𝑥𝑥 𝐼𝐼†𝜕𝜕𝑥𝑥𝐼𝐼 − 𝐿𝐿† 𝜕𝜕𝑥𝑥𝐿𝐿



Tomonaga-Luttinger liquid (TLL or LL)
• bosonization of the right- and left-moving electrons 

• 𝜙𝜙,𝜃𝜃: bosonic fields fulfilling the commutation relation: 

𝜙𝜙 𝑥𝑥 ,𝜃𝜃 𝑥𝑥′ = 𝑖𝑖𝑖𝑖
2

sign(𝑥𝑥′ − 𝑥𝑥)
• effective theory (mapping interacting fermions to free bosons)

𝐻𝐻kin + 𝐻𝐻int = ℏ𝑢𝑢
2𝑖𝑖
∫ 𝑑𝑑𝑥𝑥 1

𝐾𝐾
𝜕𝜕𝑥𝑥𝜙𝜙 2 + 𝐾𝐾 𝜕𝜕𝑥𝑥𝜃𝜃 2 ,

• quadratic Hamiltonian ⇒ using TLL model to compute physical quantities (not here)
• interaction strength encoded in the parameter K

• K = 1 : free fermions (i.e., Fermi liquid = FL)
• K < 1 (K  > 1): repulsive (attractive) interaction 

𝐼𝐼 =
𝑈𝑈𝑅𝑅
2𝜋𝜋𝑎𝑎

𝑒𝑒𝑖𝑖[−𝜙𝜙(𝑥𝑥)+𝜃𝜃(𝑥𝑥)], 𝐿𝐿 =
𝑈𝑈𝐿𝐿
2𝜋𝜋𝑎𝑎

𝑒𝑒𝑖𝑖[𝜙𝜙(𝑥𝑥)+𝜃𝜃(𝑥𝑥)]



Transport in clean 1D interacting systems

• clean wires connected to leads: ballistic conductance 𝐺𝐺 = 2𝑒𝑒2

ℎ
× 𝐾𝐾𝐿𝐿

Maslov and Stone, PRB 52, R5539 (1995); Ponomarenko, PRB 52, R8666 (1995); 
Safi and Schulz, PRB 52, R17040 (1995)

• physical meaning of contact resistance (from the last section): 
• from the process where electron wave packet from 3D reservoir gets back scattered when trying 

to enter the narrow conduction modes in a Q1D conductor 
• no information about e-e interaction within the conductor!  

• Q: can there still be transport features coming from e-e interaction in the conductor?
Yes! we need some backscattering within the conductor
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Effects of impurities in 1D  
• different modeling according to their strength and positions
• strong impurities: 

acting as tunnel barriers, either at the boundary or inside the conductor

• barrier between LL wire and LL wire or between LL and FL lead
• weak impurities: 

acting as a potential perturbation
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Impurities as tunnel barriers 

• current through tunneling: 𝐻𝐻tun = −𝑡𝑡tun∫ 𝑑𝑑𝑥𝑥 𝛿𝛿 𝑥𝑥 𝜓𝜓<
† 𝑥𝑥 𝜓𝜓> 𝑥𝑥 + ℎ. 𝑐𝑐.

𝑑𝑑𝐼𝐼tun
𝑑𝑑𝑉𝑉

∝ �𝑉𝑉
1
𝐾𝐾−1 (boundary barrier)

𝑉𝑉
2
𝐾𝐾−2 (interior barrier)

• power-law (differential) conductance with an exponent depending on 
impurity position and interaction strength (K =1 gives linear response for FL) 
Kane and Fisher, PRB 46, 15233 (1992)

• universal scaling formula for temperature T and bias V :
• observed in carbon nanotubes 

Bockrath et al., Nature 397, 598 (1999)
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Universal scaling behavior in transport

• I-V curves at different T collapse onto a single curve upon rescaling
• observation in InAs nanowires

41Sato et al., PRB 99, 155304 (2019)



Impurities as potential perturbation
• isolated impurity at 𝑥𝑥 = 0: 
𝐻𝐻imp = 𝑉𝑉0∫ 𝑑𝑑𝑥𝑥 𝛿𝛿 𝑥𝑥 𝜌𝜌 𝑥𝑥

• backscattering caused by impurities: conductance correction

𝐺𝐺 = 𝑒𝑒2

ℎ
+ 𝛿𝛿𝐺𝐺 with 𝛿𝛿𝐺𝐺 < 0 and |𝛿𝛿𝐺𝐺| ∝ 𝑉𝑉2−2𝐾𝐾 or |𝛿𝛿𝐺𝐺| ∝ 𝑇𝑇2−2𝐾𝐾

• power-law correction with a scaling exponent 
Kane and Fisher, PRB 46, 15233 (1992)

• uniform reduction of conductance
in GaAs wires

42

Tarucha et al., Sol. State. Commun. 94, 413 (1995)



General transport features in interacting systems

• backscattering effect enhanced by e-e interaction
• deviation from ballistic conductance increases with interaction strength
• 𝐾𝐾 → 1: usual formula for noninteracting systems (Fermi liquid)

• transport features for Tomonaga-Luttinger liquid
• universal scaling formula
• power-law conductance (correction) 
• interaction strength in nanodevices deduced from measurements

• Anderson localization by potential disorder: 
𝐻𝐻dis = ∫ 𝑑𝑑𝑥𝑥 𝑉𝑉dis 𝑥𝑥 𝜌𝜌 𝑥𝑥

• e-e interaction enhances the tendency towards localization in 1D,
with higher localization temperature and shorter localization length
Giamarchi et al., PRB 37, 325 (1988)
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Effects of spin-orbit coupling (SOC)
• Rashba SOC term in 1D semiconductors: 𝐻𝐻R,1D = 𝛼𝛼𝑅𝑅𝜎𝜎𝑦𝑦𝑘𝑘𝑥𝑥 : 

• linear-in-momentum term can be gauged away in strict 1D

⇒ no spin-orbit effects on charge transport 
Braunecker et al., PRB 82, 045127 (2010)

• no interaction effect in 1D clean systems
Maslov and Stone, PRB 52, R5539 (1995); Ponomarenko, PRB 52, R8666 (1995); 
Safi and Schulz, PRB 52, R17040 (1995)

• finite width of realistic wires: higher transverse subbands in Q1D
⇒ unlike strict 1D, SOC cannot be completely removed

• disorder or charge impurities in realistic wires 44
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Interacting 1D channel with spin
• low T : only electrons near Fermi level matter:  𝜓𝜓𝜎𝜎 ≈ 𝑒𝑒𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐼𝐼𝜎𝜎 + 𝑒𝑒−𝑖𝑖𝑘𝑘𝐹𝐹𝑥𝑥𝐿𝐿𝜎𝜎
• kinetic energy (linearized):    

• e-e interaction: 

• bosonization: 

• spinful (Tomonaga-)Luttinger liquid with two charge (c) and spin (s) sectors

• charge-spin separation in usual 1D wires (negligible spin-orbit coupling) 47

𝐻𝐻int = ∫ 𝑑𝑑𝑥𝑥 𝑉𝑉ee 𝑥𝑥 𝜌𝜌 𝑥𝑥 𝜌𝜌 𝑥𝑥 ≈ ∑𝜎𝜎 𝑉𝑉ee,0∫ 𝑑𝑑𝑥𝑥 𝐼𝐼𝜎𝜎
†𝐼𝐼𝜎𝜎𝐿𝐿𝜎𝜎

† 𝐿𝐿𝜎𝜎 + 1
2

𝐼𝐼𝜎𝜎
†𝐼𝐼𝜎𝜎

2
+ 𝐿𝐿𝜎𝜎

† 𝐿𝐿𝜎𝜎
2

𝐼𝐼𝜎𝜎 = 𝑈𝑈𝑅𝑅𝜎𝜎
2𝑖𝑖𝑎𝑎

𝑒𝑒𝑖𝑖 −𝜙𝜙𝑐𝑐 𝑥𝑥 +𝜃𝜃𝑐𝑐 𝑥𝑥 −𝜎𝜎𝜙𝜙𝑠𝑠 𝑥𝑥 +𝜎𝜎𝜃𝜃𝑠𝑠 𝑥𝑥 /√2, 𝐿𝐿𝜎𝜎 = 𝑈𝑈𝑅𝑅𝜎𝜎
2𝑖𝑖𝑎𝑎

𝑒𝑒𝑖𝑖 𝜙𝜙𝑐𝑐 𝑥𝑥 +𝜃𝜃𝑐𝑐 𝑥𝑥 +𝜎𝜎𝜙𝜙𝑠𝑠 𝑥𝑥 +𝜎𝜎𝜃𝜃𝑠𝑠 𝑥𝑥 /√2

𝐻𝐻kin + 𝐻𝐻int = �
𝜈𝜈=𝑐𝑐,𝑠𝑠

�
ℏ𝑑𝑑𝑥𝑥
2𝜋𝜋

𝑢𝑢𝜈𝜈𝐾𝐾𝜈𝜈 𝜕𝜕𝑥𝑥𝜃𝜃𝜈𝜈 2 +
𝑢𝑢𝜈𝜈
𝐾𝐾𝜈𝜈

𝜕𝜕𝑥𝑥𝜙𝜙𝜈𝜈 2

𝐻𝐻kin = −𝑖𝑖 ℏ𝑣𝑣𝐹𝐹 ∑𝜎𝜎 ∫ 𝑑𝑑𝑥𝑥 ( 𝐼𝐼𝜎𝜎
† 𝜕𝜕𝑥𝑥 𝐼𝐼𝜎𝜎 − 𝐿𝐿𝜎𝜎

† 𝜕𝜕𝑥𝑥 𝐿𝐿𝜎𝜎)



Spin-orbit effects on Q1D wires 

• Q1D + SOC: band distortion 
⇒ causing a charge-spin mixing term in the Hamiltonian

• Q1D + SOC + impurities: new transport features
⇒ power-law conductance and universal scaling formula with scaling exponents 
depending on e-e interaction and spin-orbit-induced band distortion
Sato et al., PRB 99, 155304 (2019); Hsu et al., PRB 100, 195423 (2019)
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if time permits …
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Quantum spin Hall insulator (QSHI) and edge states

• also called two-dimensional topological insulator (2DTI)
• gapless edge states protected by the bulk topology
• helical nature: spin-momentum locking
• interacting electrons in one dimension

Hsu et al., SST 36, 123003 (2021)



Interacting electrons in 1D edge channels

• effective theory for electrons in a helical edge (coordinate r):

• kinetic energy

• (screened) Coulomb interaction between electrons

𝐻𝐻hel = 𝐻𝐻kin + 𝐻𝐻ee



Helical Tomonaga-Luttinger liquid (hTLL)
• effective edge theory

• bosonization of the right- and left-moving edge modes

• interaction strength encoded in the parameter K (K=1: no interaction)
• how to extract its value from a real sample?
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Spectroscopic signatures: local density of states (DOS)

• local DOS as functions of T and 𝜖𝜖 = 𝐸𝐸 − 𝐸𝐸𝐹𝐹

Bockrath et al., Nature 397, 598 (1999)

• 𝜌𝜌TLL/𝑇𝑇𝛼𝛼 depends only on the ratio of 𝜖𝜖/𝑇𝑇 for any 𝜖𝜖 and T
⇒ universal scaling behavior 

• the exponent α depends on the interaction strength
• for a helical edge, 𝛼𝛼 = (𝐾𝐾 + 1/𝐾𝐾 − 2)/2
⇒ stronger interaction gives smaller K and larger α



Experimental observations
• local DOS of the edge mode

Stühler et al., Nat. Phys. 16, 47 (2019)
• asymptotic behavior

- 𝜌𝜌 ∝ |𝜖𝜖|𝛼𝛼 for 𝜖𝜖 ≡ 𝐸𝐸 − 𝐸𝐸𝐹𝐹 ≫ 𝑘𝑘𝐵𝐵𝑇𝑇
- 𝜌𝜌 ∝ 𝑇𝑇𝛼𝛼 for 𝜖𝜖 ≪ 𝑘𝑘𝐵𝐵𝑇𝑇

• local DOS at the edge
- universal scaling behavior
- the fitted parameter value is consistent with the

estimated value K ≈ 0.4-0.6
• spectroscopic feature for helical liquids in QSHI
• how about transport?
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Edge transport in QSHI



Experiment:  M. König et al. Science 318, 766 (2007).
Longitudinal resistance of normal (I) and inverted (II, III, and IV) 
regimes as a function of the gate voltage at T = 30 mK
device sizes: 
20 x 13.3 μm2 (I and II), 1.0 x 1.0 μm2 (III), and 1.0 x 0.5 μm2 (IV)

Theory:  B. A. Bernevig et al. Science 314, 1757 (2006) 
Bulk energy bands of CdTe/HgTe/CdTe quantum well

HgTe/CdTe

2-terminal measurement gives GLR = 2e2/h in the 
topological regime, and GLR = 0 in the trivial regime



InAs/GaSb

• theory: quantized edge conductance
• experiments did not agree! 

Theory:  C. Liu et al., PRL 100, 236601 (2008)
Energy bands of InAs/GaSb QW

Experiment:  I. Knez et al., PRL 107, 136603 (2011)
Longitudinal resistance of InAs/GaSb QW as a function of the gate 
voltage for various edge lengths at T = 300 mK



Finite edge resistance in realistic samples
• experiments:

• no robustly quantized conductance in larger samples
• presence of backscattering and resistance sources

• various backscattering mechanisms were proposed:
• e-e interaction, SOC, noise, phonons, charge puddles, magnetic impurities, ...

• time-reversal-invariant (inelastic) or time-reversal-symmetry breaking mechanisms 
58

HgTe Olshanetsky et al., PRL 114, 126802 (2015) and InAs/GaSb Mueller et al., PRB 96, 075406 (2017)
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Hsu et al., SST 36, 123003 (2021)
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Hsu et al., SST 36, 123003 (2021)
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