Quantum transport

TIGP course
Advanced Nanotechnology (A)

March 26th, 2025

N — -

REBT Chen-Hsuan Hsu

RESIE




Bibliography

 Supriyo Datta, Electric Transport in Mesoscopic Systems (1995)
* Douglas Natelson, Nanostructures and Nanotechnology (2015)
* Thierry Giamarchi, Quantum Physics in One Dimension (2003)
» Additional references listed in the slides

Recruitment

« Quantum Matter Theory Group at loP, AS ARG
* We welcome postdocs, assistants, and students to join us g s
* Welcome to share the information! (@) iiag:




In this class ...

e goal: concept of quantum transport
* materials:
* single-particle regime:
* Douglas Natelson, Nanostructures and nanotechnology (Sec. 6.4)

* Supriyo Datta, Electronic Transport in Mesoscopic Systems

* beyond the single-particle regime:
* Thierry Giamarchi, Quantum Physics in One Dimension
» additional references on interacting 1D systems

e warning: inconsistent notations from different sources



Outline

* Review of useful concepts from quantum mechanics

e Quantum transport in mesoscopic systems

* Landauer-Buttiker formalism (single-particle description)
e conductance quantization in ballistic systems
* Landauer formula for an imperfect conductor
e Buttiker formula for multiterminal devices
 application
* interacting systems (beyond single-particle regime)
* interacting electrons in 1D: Tomonaga-Luttinger liquid
* impurities (weak and strong)
 effects of spin-orbit-coupling



Outline

* review of useful concepts from quantum mechanics



Charge transport in macroscopic devices

Ohm’s law: v — Ip I
+
R :resistance, IV voltage, /: current V R
* resistance (geometry) vs resistivity (material) _
L 1
R = ’DA

p : resistivity, L : length of a conductor, A : cross-section area

« question: what if we shrink the conductor (4 V) so that there can be only
few electrons passing through it at a time?
* typical length scales ~ O(100 nm) = comparable to the size of coronavirus!
* recall: how electrons move in simple 1D potential



Electron tunneling through a barrier

2

* Schrodinger equation with effective m : ino Y (x,t) = [—h— 02 + V(x)] Y(x,t)

2m

2
e for time-independent potential: [—zh—m 0z + V(x)] d(x) =E ¢dp(x)
* tunneling through a barrier with square potential (height V, and width 2a)
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[note] typo in Fig. 6.14
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general solution forE <V, :
(

Ae'k* 4 Be~lkx x < —a,
P(x) =< Ce¥* + De™ 77, —a<x<a,
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Tunneling through a barrier
* boundary conditions: continuous ¢ (x) and d,,¢(x) at x = ta:
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(A) _ | zik e(thma 2ik et (C) (C) _ 2y © 2y © (F>
B k=Y ,—(ik+y)a KV ,—(ik-y)a | \D/)"\D _ KTV ,—(ik+y)a  EHY —(ik-p)a | \G

2ik 2ik 2y 2y

A\ _ . (F _ My, M12)
= (B) B M(G)' M= (M21 M,

ik+y e(ik—y)a ik—y e(ik+y)a ik+y e(ik—y)a _ ik—y e(ik+y)a
_ | 2ik 2ik 2y 2y

tk—V —(ik+y)a  HFY —(ik-p)a |\ KTV —(ik+y)a KV ,—(ik-y)a
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* transfer matrix M : describing how a particle tunnels through the barrier
e diagonal terms: transmission through the barrier
= related to charge current



Current density and transmission coefficient

e particle current density from quantum mechanics:

h
] =5— (¢*ax¢ — ¢ax¢*)

2mi
* |eft side of the barrier (x < —a):

hk 5 5
J< =— (141 = |BI?)
* right side of the barrier (x > a):

hk 5 5

Jo=— (F] =16/

e for a particle coming from x = —oo (G — 0), the probability that it passes
through the barrier and that it gets reflected:

T(E) = |F|*/IAl? = 1/IMy4|%,  R(E) = |B|?/|Al?
e current related to transmission probability and element of M



T(E)

Transmission coefficient -

1 0.8
E<Vy: T(E) = .
1+ 0 sinh? (Z—a NI E)) e
4E(Vy — E) h 0
E>V,: T(E) 1 o4
> . = [
: 1+ Vo sin? (2—“ J2m(E —V, )) 02
4E(E — V) h 0 ;
[note] typo in Eq. (6.43) I - T Yl

* nonzero probability for E < V,, (classically forbidden regime)
* weak-tunneling regime (a wide and/or tall barrier, ya > 1)

4E(V, — E) _4a 4a
T(E) ~ ( ;2 ) e_T\/zm(VO_E) e e_Wsz(VO_E)

0

= exponential dependence on the barrier thickness
= sensitivity useful for STM/STS



Double-barrier tunneling

N
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* Mg : tunneling through the left (right) barrier

) = Me(g)
=M
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—ikb

* My, : propagation in the well with inter-barrier distanceb My = (e 0



Double-barrier tunneling (conti.)

N

E
V, Vo
Apikx Ce¥ Faikx Ae kX Cels Frikx
— -y —> ———
Be-ikx De'"”é Geikx ) B!e-ikx D,e_n{g:j B G,eikx

e total transmission coefficient

2
Moe = MiMyMp, T, (E)= 1/‘Mtot,11‘ [note] typo in Eq. (6.50)

* resonance condition with transmission probability = 1

* generalized for multiple barriers via multiplication of M matrix



Scattering matrix formalism

* instead of expressing ¢(x) for x < —a in terms of that forx > a , we
can express the outgoing wave in terms of the incoming wave

E N
Vo
e ) e
ikx Y ikx = M , M =
_A; Cer e (B G My, My,
= S = (B ) = (A) S = (511 512)
F G)’ S21 S22

X=—a X=+a X

* the role of M replaced by the scattering matrix $

e transmission probability in terms of the element of §: T(E) = |S5]|?



Two scattering regions

e combining scattering matrices in regions 1 & 2:
Sior = S ® $1-2) @ §(2)
« $(1=2): how regions 1 & 2 are connected

e ®: combining S & $(2) in a way depending on their coherence
* full coherence: combining amplitudes (elements of S)

) oty ry ty
given (tl r1’> and <t2 r2’> = Ttor = |[—F—
1 N 2 12

0 = phase () + phase (1)

* complete decoherence: probability instead of amplitude

(R, T, R, TZ) T
given <T1 R1) and (Tz R, = Tior= _RiR, (no resonance)

e partial coherence: modeling with fictitious leads

_ W T,
1-2 Rle COS 9+R1R2

(resonance!)




Scattering matrix for multiple modes

* matrix § : Unitary (ensured by current conservation)
e transmission from mode nto mode m : T,y = |Smenl?
* important concept for the development of Bittiker formula



Outline

e Quantum transport in mesoscopic systems

* Landauer-Buttiker formalism (single-particle description)
e conductance quantization in ballistic systems
* Landauer formula for an imperfect conductor
e Buttiker formula for multiterminal devices
e application



Transport through a ballistic conductor

e ballistic conductor:

a 1D or (quasi-1D) system with length L much shorter than the mean free path
of carriers (no scattering inside)

e guantum coherent scattering region connected via contacts to
classical reservoirs

ballistic

contact 2
conductor

contact 1 W

L

* no reflection within the conductor

= transmission probability = 1



Electric conductance of a ballistic conductor

ballistic
w
contact 1 conductor contact 2

E <

-k = left-movers

+k = right-movers

> k

* Q1D conductor with M transverse modes
* at T = 0: electrons filled up to u; (ug) in the left (right) contact

* number of modes with energies E; < E : M(E) = 2, O(E — Ej)
* M = 3 here



* difference in u; and up set by a bias v = £2ER contact 1

—e

e occupation prob. for right-moving carriers

w

ballistic
conductor

contact 2

f+(E, T, ug)
e current from left to right:

Ew

-k = left-movers

k
e occupation prob. for left-moving carriers

f—(E; T) ,UR)
e current in the opposite direction (from right to left):

=—- v(E(k))f (E, T, ur) M(E(K)) > ——~ j dE f_(E,T, ug) M(E)

L

+k = right-movers

> k

L= =2 W(EGO)F BT, 1) M(E(R)) — = j dE f,(E, T, 1) M(E)



°* net currentat 7=0:

I:I_I__I_

2e [
o [ BT T ) — £ T i) TMEED
0

2e 2e?
= _TM(.“L — UR) =TMV

e 2-terminal conductance of a M-channel ballistic conductor:

. dl ZeZM
dV  h
| ho1
» contact resistance: 1/G = ——
2e« M

* physical meaning:

resistance arising from the process where most of the electron wave packet from a 3D

reservoir (a large number of modes) gets reflected when trying to enter a Q1D conductor
(a few conduction modes) = the contact resistance arises at the interface!

e apart from the number of channels, the contact resistance is given by
universal constants (independent of material parameters)!



Conductance quantization in mesoscopic devices

: 2e?
* formation of conductance plateaus at G = % X M

observed in a gate-defined quantum point contact (QPC) formed in semiconductors
voltage applied to gates to pinch off the constriction

2 2
lowest plateau: anomaly at 0.7 X (%)

. . 2e?
macroscopic scale: G = oW /L vs mesoscopic scale: G = — X M



Additional features on top of quantization

1.2
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* uniformly reduced conductance plateau(s)

= e-e interaction + disorder (discussed later)
2

: 2e?)\ .
* shoulder-like feature at 0.7 X (%) in the lowest plateau

= 0.7 anomaly (spin effects? e-e interaction? fractionalization?)



Landauer formula

* for an imperfect conductor with multiple transverse modes
e 2-terminal conductance of a M-channel imperfect conductor:

c=2yt
" h

e T: transmission coefficient through a scatterer/impurity
(assumed to be energy-independent between pu; and up)

* resistance of a conductor containing a scatterer:

h 1
1/G = ——= ¥
/ 2e? MT
= total resistance of a “circuit” consisting of and

in series



Resistance contributions from more scatterers

* total resistance of a conductor with a scatterer:

h 1 h 1 h 11-T
1/G = = ——t———
2e2 MT 2e’M 2e’M T
* how about a conductor containing 2 scatterers?
» probability of a particle passing through both scatterers

(x) Tsz
(0) T12 - TlTZ + Tl TZ + TlRZRl TZ -|—

1
1—R4R,

— TlTZ + TlTZRlRZ + TszR%R% + - = TlTZ (inCOherently)

TlZ Tl TZ

, , h 1 h 11-Ty h 11-T,
* total resistance of a conductor with 2 scatterers: 1 /G = ——+—S——F—+-———
2e2M 2e2M Ty 2e2M T,




Recovering Ohm’s scaling for a long conductor

e resistance of a M-channel conductor with a scatterer:
h 1 h 11-T
= ——— 4 —
2e?M 2e? M T

e for 2 scatterers:

h 1+ h 11—Tl+ h 11-T,
2e2M 2e’ M Ty 2e2M T,
* for a long conductor with many scatterers:

h 1 h 1 1-T,
1/G =55y 3oa on 7
2e2 M 2e*M

* assuming N scatterers with the same transmission coefficient T,, > T :

1-Ty 1-T, 1-T4 . T, Lo
7y —2en g N7 2Ty =135
N n 1 1 1 0
. . h 11 L
* resistance of a long conductor with many scatterers: R « T X
N



Effects of disorder on transport

in realistic systems, disorder or charge impurities are (omni)present
they induce a random potential

Vais(®) = g Vaisg €9, Vaisq: Fourier component of the potential

coupling to charge density p =), 1/)2 Y, with the electron field operator
l/JO' ~ eikFXRO_ + e—ikFXLO_
entering the Hamiltonian as a perturbation term:
Hais = J dx Vgis(x) p(x)
= [dx Vais(x) (RIR, + LY L, + e~2tkrxRT 4 e2ikrx )T p
= forward scattering of electrons: RiRG, LE L, (transmission in “wave description”)

backscattering: RiLG, LE R, with scattering strength depending on Vy;s k. (reflection)



Microscopic origin of electrical resistance

* backscattering (R;La, LT, R;) in momentum space:

e disorder-induced backscattering in 1D channels
= origins of electrical resistance and dissipation in electronic devices

e at low T: Anderson localization of carriers in a long conductor
e exception: edge transport in quantum Hall states (topological protection)
= remarkable quantization of conductance as a new standard of basic unit



BUttiker formula

e extending the 2-terminal formula to multiterminal devices:

2 —_
I = —eT(Hl Uz)

2( i Ui— Ticj 1j)

* [; : net current flowing out of the terminal i
. 7_"]-<_i : electron transferred from terminal i to j

* relating the multiterminal conductance of a mesoscopic conductor to
its scattering properties (recall the introduced scattering matrix)

e without asking underlying scattering mechanism(s)



BUttiker formula

e at low 7, for multiterminal devices

z( i Wi — Tiej 1j)

* local chemical potential set by voltages.

26
I; = 2 (G Vi — Gl] ]) with G I l<—j [note] typo before Eq. (6.71)

* simplified with a sum rule: Zj Gji = Zj Gij (to ensure zero current for identical V;)
= I; = Z Gij(Vi = V})

e description in terms of measured current and voltage without involving underlying
microscopic transmission or scattering mechanism(s)



Application of the Buttiker formula

* makinguse of [; = %, G;;(V; — V) atlow T
* simplified by setting one of the voltages to zero
* simplified further with the Kirchhoff’s law: Zj [[ =0

* 3-terminal device as an example:
Q: given an external current I flowing from 3 to 1, measuring V
between probes 2 & 3, what is the resistance IV /I ?

 from Buttiker formula:

I Gy, + G13 —Gy; —Gy3
I, | = —Gy, Gy1 + Gy —Gy3
I3 —G3y —G3; G31 + G3;

* letV/3 =0, and we know I5 fromI; + 1, + I3 = O:

(11) _ (G12 + G13 —Gy; )(V1)
I, —Gyy Gy1 + Go3/) \V;

30



3-terminal device

Q: what is the resistance VV/I?
* inverting the matrix equation:
(V1)= n (11) _ (Glz +Giz  —Giy )‘1 (11)
V2 I —Gy4 Gp1 + Ga3 I
e the matrix can be inverted straightforwardly
* expressing V1, V5, in terms of matrix elementsof Rand I, I, :

Vi = Ri1l4 + Ryl Vo, = Ry1ly + Ryyl,

* V/I in terms of matrix element(s) of R (which can be expressed in terms of G;;):
Vv =V,

31



A-terminal device

e Q: given external current I from 4 to 1,
measuring V between probes 2 & 3,
what is the 4-terminal resistance V /I ?

* again, we have freedomtosetV, = 0,
and we knOW 14_ = _(11 + 12 + 13) .

I Gy, + G13 —Gq> —Gq3 Vi Vi
I, | = —Gyy Gyq + Gy3 —Gy3 Vo, | > R 1,
I3 —G3, —G3; G31 + Gszz ) \ V3 V3
* /I in terms of matrix element of R :
VoV, -V,
T = R1 — R3;

I _11 12=13=0

32



Edge conduction in quantum Hall states

* 6-terminal device in a quantum Hall state with // edge modes

* since the bulk is gapped, only (gapless) edge modes can carry current:
Gij =2 M,for (i = ) = (1 6),(2 < 1), 3 2), (4« 3), (5« 4), (6« 5)
Gy
= simplifying the conductance matrix in I; = }.; G;;(V; — V;)

= (0, otherwise

33



Edge conduction

i =2;Gi;; (Vi = Vj)

* wesetV, =0: / \ /Gc 00O _Gc\
—G. G, 0 0 O
= 0 —G,G. 0 O
0 0 06G O
\ / 0 O O_GCGC V6/

* inverting the matrix could give solutions, but it is unnecessary
* we note that currents at the voltage terminals are zero: I,=13=1,=15=0

:>V2:V3:V1, V5:V6:O, IlzGCV]_

L . Vo=V  Ve—Wi
* longitudinal resistance: R, = 21 2 = 61 > = (), transport without dissipation!
1 1
Vo—Vs  Va—V, h
* Hall resistance: Ry = 2—2 =22 = , experimentally very precise!
I I 2e2M

34



Outline

* interacting systems (beyond single-particle regime)
* interacting electrons in 1D: Tomonaga-Luttinger liquid
* impurities (weak and strong)
 effects of spin-orbit-coupling



Incorporating electron-electron (e-e) interaction in 1D

* only electrons near the Fermi level participates in transport:
Y ~ eFXR + e tKFX[, (spinless for simplicity)

* effective theory in a 1D channel:
Hkin + Hint

 kinetic energy (linearized spectrum):
Hyin + Hipy = —ihvp [ dx (R*@xR —1f 6xL)
* (screened) Coulomb interaction between electrons

Hine = | dx Vee () p00p(0) = [ dx{gy (R'RLY L) + 2 [(R'R) + (2F1)"]]

e going beyond the single-particle regime => cannot be diagonalized!



Tomonaga-Luttinger liquid (TLL or LL)

* bosonization of the right- and left-moving electrons

Ur_ git-omroe | = YL

21a 21a
* ¢, 8: bosonic fields fulfilling the commutation relation:

[p(x),0(x")] = %nsign(x’ — X)
 effective theory (mapping interacting fermions to free bosons)

R — e D) +0 ()]

I

h 1 B 1
Hyin + Hine = = | dx | (0:0)% + K(0:0)?|, = @W?Figa +82>
ThVE T 84 T &2

e guadratic Hamiltonian = using TLL model to compute physical quantities (not here)
* interaction strength encoded in the parameter X

e K=1:freefermions (i.e., Fermi liquid = FL)

« K<1 (K > 1):repulsive (attractive) interaction



Transport in clean 1D interacting systems

lead QW lead
Kt K K-

-L/2 L/2

. o 2e2
e clean wires connected to leads: ballistic conductance G = — X KL

* physical meaning of contact resistance (from the last section):

e from the process where electron wave packet from 3D reservoir gets back scattered when trying
to enter the narrow conduction modes in a Q1D conductor

 no information about e-e interaction within the conductor!

* Q: can there still be transport features coming from e-e interaction in the conductor?
Yes! we need some backscattering within the conductor



Effects of impurities in 1D

* different modeling according to their strength and positions
* strong impurities:
acting as tunnel barriers, either at the boundary or inside the conductor

(a) = ttun (b) - ttun
FL lead LL wire LL wire " LL wire

e barrier between LL wire and LL wire or between LL and FL lead
* weak impurities:
acting as a potential perturbation

(c)
Vo LL wire

B N N Y S NS



Impurities as tunnel barriers

(a) - tun (b) — tun
FL lead LL wire LL wire LL wire

e current through tunneling: Hyyn = —tryn) dx 8(x) tpi(x) Y (x) + h.c.

1
dltun V! (boundary barrier)

av 3_2 . . .
Vk (interior barrier)

* power-law (differential) conductance with an exponent depending on
impurity position and interaction strength (KX'=1 gives linear response for FL)

 universal scaling formula for temperature 7" and bias V:

* observed in carbon nanotubes |% veV \|?
I =17 "sinh ( 22 ) |r (14 & 4 X6
ZkBT 2 27TkBT




Universal scaling behavior in transport

% eV
I =17 sinh ( 222 )|r(14+ £ + ¢
2kBT 2 27TkBT

e /-Vcurves at different 7 collapse onto a single curve upon rescaling
e observation in InAs nanowires

2

-8
+2.09 K 4 10 4 +2.09K 7
2.45 K ] 2.45 K
2.88 K 2.88 K
3'80 K %.80 K
.07 K .07 K
10—8_ A3.39 K A3.39 K
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1 ¢3.62K 10774 +¢3.62K
[S] : <
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10 E e 10-10;
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10~4 1073 109 10!
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Impurities as potential perturbation

: : : ()
* isolated impurity at x = 0O: Vo  LLwire

Himp = Vol dx 8(x) p(x) et

* backscattering caused by impurities: conductance correction

2
G = % + 6G with §G < 0and |6G| x V272K or |5G| o« T?72%K

e power-law correction with a scaling exponent

]

O
o I -
=

* uniform reduction of conductance
in GaAs wires

-
(=
T

——— 117 K
——————— 097K A
e 0,73 K
————— 0.49 K
029K A

Conductance G (2e</h)
o
D

o
e

1 i 1 L
10 20 30 40 50
Vg-Vih (mV)



General transport features in interacting systems

* backscattering effect enhanced by e-e interaction
* deviation from ballistic conductance increases with interaction strength
e K — 1:usual formula for noninteracting systems (Fermi liquid)

* transport features for Tomonaga-Luttinger liquid
e universal scaling formula
* power-law conductance (correction)
* interaction strength in nanodevices deduced from measurements

* Anderson localization by potential disorder:
Hais = J dx Vgis(x) p(x)

e e-e interaction enhances the tendency towards localization in 1D,
with higher localization temperature and shorter localization length



Effects of spin-orbit coupling (SOC)

* Rashba SOC term in 1D semiconductors: Hg 1p = apo”k, :
* linear-in-momentum term can be gauged away in strict 1D

= no spin-orbit effects on charge transport
Braunecker et al., PRB 82, 045127 (2010)

* no interaction effect in 1D clean systems

Maslov and Stone, PRB 52, R5539 (1995); Ponomarenko, PRB 52, R8666 (1995);
Safi and Schulz, PRB 52, R17040 (1995)

finite width of realistic wires: higher transverse subbands in Q1D
= unlike strict 1D, SOC cannot be completely removed

» disorder or charge impurities in realistic wires

44



Spin-orbit effects on energy spectrum in Q1D wires
e Q1D wires || x with transverse subband index n:

hk? 1
H — = hw — H
5 + hw(n + 2) + HR
e Rashba SOC term: | .
Hg = ag(ok, — o'ky)
o o'k, term: shifting parabolic dispersion by ks, = m|ag|/h?

e o'k, term: mixing opposite spin states of neighboring subbands |rn) = |0), |1)

= band distortion ov = v4 — vg and mixing of up- and down-spins .




Spectrum and spin orientation of a SOC wire

e SOC admixes the opposite spin states of neighboring subbands
- band distortion v = v4 — vg: distinct Fermi velocities of the two branches

- spin orientation of electrons depends on chemical potential ;.

2.5

OVIVE

3 2 -1 0 1 2 3
Kly
e Backscattering on charge impurities between right- and left- movers:

Pap = [(Ra|Lp)| = [(Rp|La)|

46



Interacting 1D channel with spin

* low T': only electrons near Fermi level matter: ¥, ~ e'*FXR _ + e tkF¥], _
* kinetic energy (linearized):
Hyin = —1 hvg Zaf dx (R; Oy Ry — LE Oy Lg)
* e-e interaction:
Hine = J d2 Veo (@) pOOPG) = ToVeoo dx {RIRGLELy + 3| (RERs)” + (LhLo)" |
* bosonization:

R :&ei[—¢C(x)+6?c(x)—J¢S(x)+095(x)]/\/2 L :&ei[cl)c(x)+Bc(x)+a¢s(x)+695(x)]/\/2
o~ Vana 770 \2ma

spinful (Tomonaga-)Luttinger liquid with two charge (c) and spin (s) sectors

hdx u
Hkin + Hint — Z jﬁ{uvl(v[axgv]z T K_v [ax¢v]2}
Vv

V=C,S

e charge-spin separation in usual 1D wires (negligible spin-orbit coupling)



Spin-orbit effects on Q1D wires

e Q1D + SOC: band distortion

= causing a charge-spin mixing term in the Hamiltonian
hdx
Hy, = SU/ g{[axqbc(x)][ax@s(x)] + [0 (x)][0,0.:(x)]}

* Q1D + SOC + impurities: new transport features

= power-law conductance and universal scaling formula with scaling exponents
depending on e-e interaction and spin-orbit-induced band distortion



if time permits ...



Quantum spin Hall insulator (QSHI) and edge states

Hsu et al., SST 36, 123003 (2021)

* also called two-dimensional topological insulator (2DTl)
» gapless edge states protected by the bulk topology
 helical nature: spin-momentum locking

* interacting electrons in one dimension



Interacting electrons in 1D edge channels

* effective theory for electrons in a helical edge (coordinate r):
Hpe) = Hyin + Hee
* kinetic energy
Hyin = — ihvp / dr (RTO,R — L0,L)

* (screened) Coulomb interaction between electrons

H. =g, / ArR'RLIL + = / dr | (R'R)" + (L'L)"



Helical Tomonaga-Luttinger liquid (hTLL)

 effective edge theory

Chu T 0 o0 B
Hhe] —% Cli [g((),-@) ‘|‘K(();9) ] K:(

1
2mhvE 4 84 — &2 ) ’
2mhve + g4 + 22

* bosonization of the right- and left-moving edge modes

e

b

R\L _ UR ikFrei[—¢(r)+6’(r)]

LT . UL e—ikFrei[¢(r)+9(r)]

B A 2ma

* interaction strength encoded in the parameter K (K=1: no interaction)

* how to extract its value from a real sample?



Spectroscopic signatures: local density of states (DOS)

* local DOS as functions of Tand e = E — Ef

2
1+ « €
r i
( > EQWT) |

priL(e, T") oc T cosh (QL:EBT)

* pr1.1./T% depends only on the ratio of ¢/T forany eand T
= universal scaling behavior

 the exponent a depends on the interaction strength

* for a helical edge, a = (K + 1/K — 2)/2
= stronger interaction gives smaller K and larger a



Experimental observations
* local DOS of the edge mode

2
€ 1+ « €
T cosl T ; |
R (QA:BT) ( > ‘?szﬂBT) |

Stuhler et al., Nat. Phys. 16, 47 (2019)
* asymptotic behavior
-p < |€|* for |e| = |E — Eg| > kgT
-px T?® for |e| K kgT
* local DOS at the edge
- universal scaling behavior b
- the fitted parameter value is consistent with the
estimated value K = 0.4-0.6
» spectroscopic feature for helical liquids in QSHI
* how about transport?
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Edge transport in QSH|

e R and L4 in helical channels:
spin flip necessary for elastic backscattering R| <+ L

e Charge impuirities:
creating potential disorder Vs but no spin flip: (L+|Vgs|R,) =0
= (naive) expectation: no edge resistance

LXK
\’z \V
M

E(k)

e Transport signature when the chemical potential u is in the bulk gap Ay
= quantized edge conductance at e*/h



HgTe/CdTe
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«—> FS
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d>d.

Theory: B. A. Bernevig et al. Science 314, 1757 (2006)
Bulk energy bands of CdTe/HgTe/CdTe quantum well
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2-terminal measurement gives G,z = 2e?/h in the
topological regime, and G, i = 0 in the trivial regime
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regimes as a function of the gate voltage at T = 30 mK

device sizes:
20 x 13.3 um? (I and Il), 1.0 x 1.0 ym?2 (lll), and 1.0 x 0.5 pm? (1V)
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» Experiment: M. Konig et al. Science 318, 766 (2007).
Longitudinal resistance of normal (l) and inverted (ll, Ill, and V)



InAs/GaSbh

' Barrier GaSb  Barrier | Back

';r:t';t AISb 0.7eV  AISb gate
v, = 16eV E, === "6V v,
InAs H,
0.36eV
H ]
E /}\ ;l\ I Eg
/\Z\
k Experiment: |. Knez et al., PRL 107, 136603 (2011)

Theory: C. Liu et al., PRL 100, 236601 (2008)

Energy bands of InAs/GaSb QW Longitudinal resistance of InAs/GaSb QW as a function of the gate

voltage for various edge lengths at T = 300 mK

* theory: quantized edge conductance
e experiments did not agree!



Finite edge resistance in realistic samples

* experiments:
* no robustly quantized conductance in larger samples
e presence of backscattering and resistance sources
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HgTe and InAs/GaSb

* various backscattering mechanisms were proposed:
* e-einteraction, SOC, noise, phonons, charge puddles, magnetic impurities, ...

e time-reversal-invariant (inelastic) or time-reversal-symmetry breaking mechanisms



Time-reversal-symmetry breaking mechanisms

TRS breaking mechanism

R or —6G

Remark

Single magnetic impurity

T2K-2 for T < Tk
const. +1In ( ii%‘) foeT Tk

Single charge impurity

| 72K —2
(with a finite magnetic field)

2 - B . . /
Kondo lattice (1D Kondo array) {ZTFQK_Q for Erin <koT < Qs Localization at low T
Magnetic-impurity ensemble eBrs/(kBT)  for T < Tis i ak e
(with spin diffusion into the bulk) T2K-2 for T > 15, Localization for K < 3/2
Spiral-order-induced field -mgeﬁﬁﬂf (kBT)  for T < Tia o, s
(below spiral ordering T}) i for T T Localization for K < 3/2
Magnon b _31 for magnon emission
(below spiral ordering T) T3-2K  for magnon absorption

DNPf

(for K =~ 1 and finite spin-flip rate)
DNP with random SOI&

(for K ~ 1 and long channels)

(T + const.) !

T—2/3

Hsu et al., SST 36, 123003 (2021)
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Time-reversal-invariant mechanisms

TRS preserving mechanism R or —8G Reference Notation or name in the original work
1IPB by Hee s e"hvpkp /(kT)  for kpT < hvpkp Kainaris et al (2014) &1 X b process
(for clean systems) T2K+3 for kgT > hvpkp
1IPB by Hee s & Hipp s T2K+2 Wu et al (2006) H.is or two-particle backscattering due to quenched disorder
1PB by Hees & Hi2S, T2K+2 Xu and Moore (2006) Scattering by spatially random quenched impurities
1PB by Hee1 & Himp,b TC for K »~ 1 Kainaris ef al (2014) g3 X fprocess (in their class of two-particle processes)
1PB b.‘v" Heos & Himp.b -y fDI‘ K~1 e
2PB by Hee,3 & Himp s T8K-2 Localization for K < 3/8. Schmidt er al (2012) H?/‘,iim
2PB by Hee,s & H{y, e Kainaris er al (2014) g3 X b process (in their class of one-particle processes)
Random 501 0 Wu et al (2006) H.., or impurity-induced two-particle correlated backscattering
For K > 1/2: (T*K for T < T2, Maciejko et al (2009) H, or local impurity-in.duced two-.particle backscattering
Higher-order random SOI T4K In2(kgT/Ay,) for T > T2, Lezmy er al (2012) £2p Process or two-particle scattering
(single scatterer) Rl eioetls éi’ , i .
or1/4< K <1/2: {T o T < Ty, Schmidt et al (2012) Hy, or inelastic backscattering of a single electron with energy trans-
T4K In*(kgT /Ay) for T > Ty, fer to another particle-hole pair
T4 for kgT < 8, Kainaris ef al (2014) g5 process
even valley: { T2 for 63 < kgT < Egy, Chou et al (2015) Hy or one-particle spin-flip umklapp term
const. for kgT > E_,
T4 for kgT < T Kainaris er al (2014) gs X fprocess (in their class of one-particle processes)
Short channel (a single puddle): cvcn-f:»fid const. for lt\t < kT <« 8y Chou et al (2015) Hyw (same notation for clean and disordered systems)
transition: o B for 64 < kpT < E,
const. for kT > E_, Kainaris ef al (2014) 25 % b (in their class of one-particle processes)
1PB in charge puddles T4 for T < Tk
(for K =~ 1) ——— In2(T/Ti) for kpTk < kT < 8a Lezmy et al (2012) gie process or inelastic scattering
B for 84 < kpT < Eq : TR ,
const. for kgT > Eg, Strom et al (2010) Hp or randomly fluctuating Rashba spin-orbit coupling
T taT Ty Ge?sslelr eral (2014) Random Rashba spin—orbit coupling
Long channel: B, 8842 1/ 2[5y /(kgT)] for kT < 8, K:cunans et al (2014) Qimp,b Process '
1/1n°[84/(kT)] for kgT < 8 Xie et al (2016) Random Rashba backscattering

Foca 2 i { 1/n[da/(ksT)|

for cfrf' < kT < 64

Telegraph noise: T2 tanh (%ﬁ%)

Kharitonov et al (2017)

HporU (1)-asymmetric single-particle backscattering field

Crépin et al (2012)

Inelastic two-particle backscattering from a Rashba impurity

Noise! o
(for K = 1, long channels) 1/ f noise: {g: i{?r. ?_i? ;(: gz:
Acoustic longitudinal phonon 0

Transverse phonon
(for K ~ 1)

g—’“‘i- kp/(kT)
Short channel:

T‘:; for LBT 4 ]bl‘].'k‘r.‘_, J[CBHD
Long channel: { T5 for hvpkp < kgT < kgfp
/ for kBT > kBeD > ’ll.’pk[.'

r'DT kBT < ‘i“cph.fkf-‘
const. T3+ const. T® for kgT > hepy, ik p

Hsu et al., SST 36, 123003 (2021)
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