

Quantum transport TIGP course Advanced Nanotechnology (A)

March 26th, 2025 徐晨軒 Chen-Hsuan Hsu

Bibliography

- Supriyo Datta, Electric Transport in Mesoscopic Systems (1995)
- Douglas Natelson, Nanostructures and Nanotechnology (2015)
- Thierry Giamarchi, Quantum Physics in One Dimension (2003)
- Additional references listed in the slides

Recruitment

- Quantum Matter Theory Group at IoP, AS
- We welcome postdocs, assistants, and students to join us
- Welcome to share the information!

In this class ...

- goal: concept of quantum transport
- materials:
 - single-particle regime:
 - Douglas Natelson, *Nanostructures and nanotechnology* (Sec. 6.4) (unfortunately some typos ...)
 - Supriyo Datta, *Electronic Transport in Mesoscopic Systems* (older but still useful)
 - beyond the single-particle regime:
 - Thierry Giamarchi, Quantum Physics in One Dimension
 - additional references on interacting 1D systems
- warning: inconsistent notations from different sources

Outline

- Review of useful concepts from quantum mechanics
- Quantum transport in mesoscopic systems
 - Landauer-Büttiker formalism (single-particle description)
 - conductance quantization in ballistic systems
 - Landauer formula for an imperfect conductor
 - Büttiker formula for multiterminal devices
 - application
 - interacting systems (beyond single-particle regime)
 - interacting electrons in 1D: Tomonaga-Luttinger liquid
 - impurities (weak and strong)
 - effects of spin-orbit-coupling

Outline

review of useful concepts from quantum mechanics

- quantum transport in mesoscopic systems
 - Landauer-Büttiker formalism (single-particle description)
 - conductance quantization in ballistic systems
 - Landauer formula for an imperfect conductor
 - Büttiker formula for multiterminal devices
 - application
 - interacting systems (beyond single-particle regime)
 - interacting electrons in 1D: Tomonaga-Luttinger liquid
 - impurities (weak and strong)
 - effects of spin-orbit-coupling

Charge transport in macroscopic devices

• Ohm's law:

$$V = IR$$

R: resistance, V: voltage, I: current

• resistance (geometry) vs resistivity (material)

$$R = \rho \frac{L}{A}$$

Wikipedia page of Ohm's law

ho : resistivity, L : length of a conductor, A : cross-section area

- question: what if we shrink the conductor (A ↘) so that there can be only few electrons passing through it at a time?
 - typical length scales ~ $O(100 \text{ nm}) \Rightarrow$ comparable to the size of coronavirus!
 - recall: how electrons move in simple 1D potential

Electron tunneling through a barrier

- Schrödinger equation with effective m: $i\hbar\partial_t\psi(x,t) = \left[-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\right]\psi(x,t)$
- for time-independent potential: $\left| -\frac{\hbar^2}{2m} \partial_x^2 + V(x) \right| \phi(x) = E \phi(x)$
- tunneling through a barrier with square potential (height V_0 and width 2a)

[note] typo in Fig. 6.14

Tunneling through a barrier

• boundary conditions: continuous $\phi(x)$ and $\partial_x \phi(x)$ at $x = \pm a$:

$$\begin{pmatrix} A\\B \end{pmatrix} = \begin{pmatrix} \frac{ik+\gamma}{2ik}e^{(ik-\gamma)a} & \frac{ik-\gamma}{2ik}e^{(ik+\gamma)a}\\ \frac{ik-\gamma}{2ik}e^{-(ik+\gamma)a} & \frac{ik+\gamma}{2ik}e^{-(ik-\gamma)a} \end{pmatrix} \begin{pmatrix} C\\D \end{pmatrix}, \begin{pmatrix} C\\D \end{pmatrix} = \begin{pmatrix} \frac{ik+\gamma}{2\gamma}e^{(ik-\gamma)a} & -\frac{ik-\gamma}{2\gamma}e^{(ik+\gamma)a}\\ -\frac{ik-\gamma}{2\gamma}e^{-(ik+\gamma)a} & \frac{ik+\gamma}{2\gamma}e^{-(ik-\gamma)a} \end{pmatrix} \begin{pmatrix} F\\G \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} A\\B \end{pmatrix} = \mathbf{M} \begin{pmatrix} F\\G \end{pmatrix}, \ \mathbf{M} = \begin{pmatrix} M_{11} & M_{12}\\ M_{21} & M_{22} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{ik+\gamma}{2ik}e^{(ik-\gamma)a} & \frac{ik-\gamma}{2ik}e^{(ik+\gamma)a}\\ \frac{ik-\gamma}{2ik}e^{-(ik+\gamma)a} & \frac{ik+\gamma}{2ik}e^{-(ik-\gamma)a} \end{pmatrix} \begin{pmatrix} \frac{ik+\gamma}{2\gamma}e^{(ik-\gamma)a} & -\frac{ik-\gamma}{2\gamma}e^{(ik+\gamma)a}\\ -\frac{ik-\gamma}{2\gamma}e^{-(ik+\gamma)a} & \frac{ik+\gamma}{2\gamma}e^{-(ik-\gamma)a} \end{pmatrix}$$

- transfer matrix *M* : describing how a particle tunnels through the barrier
 - diagonal terms: transmission through the barrier

 \Rightarrow related to charge current

Current density and transmission coefficient

• particle current density from quantum mechanics:

$$J = \frac{\hbar}{2mi} (\phi^* \partial_x \phi - \phi \partial_x \phi^*)$$

• left side of the barrier ($x < -a$):
$$J_{<} = \frac{\hbar k}{m} (|A|^2 - |B|^2)$$

• right side of the barrier (x > a):

$$J_{>} = \frac{\hbar k}{m} (|F|^{2} - |G|^{2})$$

• for a particle coming from $x = -\infty$ ($G \rightarrow 0$), the probability that it passes through the barrier and that it gets reflected:

$$T(E) \equiv |F|^2 / |A|^2 = 1 / |M_{11}|^2, \quad R(E) \equiv |B|^2 / |A|^2$$

• current related to transmission probability and element of **M**

- nonzero probability for $E < V_0$ (classically forbidden regime)
- weak-tunneling regime (a wide and/or tall barrier, $\gamma a \gg 1$)

$$T(E) \approx \frac{4E(V_0 - E)}{V_0^2} e^{-\frac{4a}{\hbar}\sqrt{2m(V_0 - E)}} \propto e^{-\frac{4a}{\hbar}\sqrt{2m(V_0 - E)}}$$

 \Rightarrow exponential dependence on the barrier thickness \Rightarrow sensitivity useful for STM/STS

Double-barrier tunneling

• $M_{L(R)}$: tunneling through the left (right) barrier

• M_W : propagation in the well with inter-barrier distance b

$$\boldsymbol{M}_{\boldsymbol{W}} = \begin{pmatrix} e^{-ikb} & 0\\ 0 & e^{ikb} \end{pmatrix}$$

Double-barrier tunneling (conti.)

total transmission coefficient

$$M_{tot} = M_L M_W M_R$$
, $T_{tot}(E) = 1/|M_{tot,11}|^2$ [note] typo in Eq. (6.50)

- resonance condition with transmission probability = 1
- generalized for multiple barriers via multiplication of M matrix

Scattering matrix formalism

• instead of expressing $\phi(x)$ for x < -a in terms of that for x > a, we can express the outgoing wave in terms of the incoming wave

- the role of **M** replaced by the scattering matrix **S**
- transmission probability in terms of the element of \mathbf{S} : $T(E) = |S_{12}|^2$

Two scattering regions

• combining scattering matrices in regions 1 & 2:

$$\boldsymbol{S_{tot}} = \boldsymbol{S}^{(1)} \bigotimes \boldsymbol{S}^{(1-2)} \bigotimes \boldsymbol{S}^{(2)}$$

- $S^{(1-2)}$: how regions 1 & 2 are connected
- \otimes : combining $S^{(1)} \& S^{(2)}$ in a way depending on their coherence
 - full coherence: combining amplitudes (elements of **S**)

given
$$\begin{pmatrix} r_1 & t_1' \\ t_1 & r_1' \end{pmatrix}$$
 and $\begin{pmatrix} r_2 & t_2' \\ t_2 & r_2' \end{pmatrix}$ \Rightarrow $T_{tot} = \left| \frac{t_1 t_2}{1 - r_1' r_2} \right|^2 = \frac{T_1 T_2}{1 - 2\sqrt{R_1 R_2} \cos \theta + R_1 R_2}$ (resonance!)
 $T_{1,2} = \left| t_{1,2} \right|^2 = \left| t'_{1,2} \right|^2 R_{1,2} = \left| r_{1,2} \right|^2 = \left| r'_{1,2} \right|^2$
 $\theta = \text{phase} (r_1') + \text{phase} (r_2)$

• complete decoherence: probability instead of amplitude

given
$$\begin{pmatrix} R_1 & T_1 \\ T_1 & R_1 \end{pmatrix}$$
 and $\begin{pmatrix} R_2 & T_2 \\ T_2 & R_2 \end{pmatrix} \Rightarrow T_{tot} = \frac{T_1 T_2}{1 - R_1 R_2}$ (no resonance)

• partial coherence: modeling with fictitious leads

Scattering matrix for multiple modes

$$\boldsymbol{S} = \begin{pmatrix} S_{11} & \cdots & S_{1N} \\ \vdots & \ddots & \vdots \\ S_{N1} & \cdots & S_{NN} \end{pmatrix}$$

- matrix S: Unitary (ensured by current conservation)
- transmission from mode n to mode $m : T_{m \leftarrow n} = |S_{m \leftarrow n}|^2$
- important concept for the development of Büttiker formula

Outline

- Review of useful concepts from quantum mechanics
- Quantum transport in mesoscopic systems
 - Landauer-Büttiker formalism (single-particle description)
 - conductance quantization in ballistic systems
 - Landauer formula for an imperfect conductor
 - Büttiker formula for multiterminal devices
 - application
 - interacting systems (beyond single-particle regime)
 - interacting electrons in 1D: Tomonaga-Luttinger liquid
 - impurities (weak and strong)
 - effects of spin-orbit-coupling

Transport through a ballistic conductor

• ballistic conductor:

a 1D or (quasi-1D) system with length L much shorter than the mean free path of carriers (no scattering inside)

 quantum coherent scattering region connected via contacts to classical reservoirs

no reflection within the conductor
 ⇒ transmission probability = 1

Electric conductance of a ballistic conductor

- Q1D conductor with *M* transverse modes
- at T = 0: electrons filled up to $\mu_L (\mu_R)$ in the left (right) contact
- number of modes with energies $E_j < E : M(E) = \sum_j \Theta(E E_j)$
- M = 3 here

- difference in μ_L and μ_R set by a bias $V = \frac{\mu_L \mu_R}{-\rho}$
- occupation prob. for right-moving carriers

 $f_+(E,T,\mu_L)$

• current from left to right:

$$I_{+} = -\frac{e}{L} \sum_{k} v(E(k)) f_{+}(E,T,\mu_{L}) M(E(k)) \rightarrow -\frac{2e}{h} \int_{0}^{\infty} dE f_{+}(E,T,\mu_{L}) M(E)$$

occupation prob. for left-moving carriers

 $f_{-}(E,T,\mu_R)$

• current in the opposite direction (from right to left):

$$I_{-} = -\frac{e}{L} \sum_{k} v(E(k)) f_{-}(E,T,\mu_{R}) M(E(k)) \rightarrow -\frac{2e}{h} \int_{0}^{\infty} dE f_{-}(E,T,\mu_{R}) M(E)$$

• net current at T = 0:

$$I = I_{+} - I_{-} = -\frac{2e}{h} \int_{0}^{\infty} dE [f_{+}(E, T, \mu_{L}) - f_{-}(E, T, \mu_{R})] M(E)$$
$$= -\frac{2e}{h} M(\mu_{L} - \mu_{R}) = \frac{2e^{2}}{h} MV$$

• 2-terminal conductance of a *M*-channel ballistic conductor:

$$G = \frac{dI}{dV} = \frac{2e^2}{h}M$$

- contact resistance: $1/G = \frac{h}{2e^2} \frac{1}{M}$
 - physical meaning:

resistance arising from the process where most of the electron wave packet from a 3D reservoir (a large number of modes) gets reflected when trying to enter a Q1D conductor (a few conduction modes) \Rightarrow the contact resistance arises at the interface!

 apart from the number of channels, the contact resistance is given by universal constants (independent of material parameters)!

Conductance quantization in mesoscopic devices

• formation of conductance plateaus at $G = \frac{2e^2}{h} \times M$

van Wees et al., PRL 60, 848 (1988)

Wharam et al., J. Phys. C: Sol. State Phys. 21, L209 (1988)

- observed in a gate-defined quantum point contact (QPC) formed in semiconductors
- voltage applied to gates to pinch off the constriction
- lowest plateau: anomaly at $0.7 \times \left(\frac{2e^2}{h}\right)$

• macroscopic scale: $G = \sigma W/L$ vs mesoscopic scale: $G = \frac{2e^2}{h} \times M$

Additional features on top of quantization

Tarucha et al., Sol. State. Commun. 94, 413 (1995)

- uniformly reduced conductance plateau(s)
 ⇒ e-e interaction + disorder (discussed later)
- shoulder-like feature at $0.7 \times \left(\frac{2e^2}{h}\right)$ in the lowest plateau $\Rightarrow 0.7$ anomaly (spin effects? *e-e* interaction? fractionalization?)

Landauer formula

- for an imperfect conductor with multiple transverse modes
- 2-terminal conductance of a *M*-channel imperfect conductor:

$$G = \frac{2e^2}{h} M \,\overline{T}$$

- \overline{T} : transmission coefficient through a scatterer/impurity (assumed to be energy-independent between μ_L and μ_R)
- resistance of a conductor containing a scatterer:

$$1/G = \frac{h}{2e^2} \frac{1}{M\overline{T}} = \left(\frac{h}{2e^2} \frac{1}{M}\right) + \left(\frac{h}{2e^2} \frac{1}{M} \frac{1-\overline{T}}{\overline{T}}\right)$$

⇒ total resistance of a "circuit" consisting of contact resistance and scattererinduced resistance in series

Resistance contributions from more scatterers

• total resistance of a conductor with a scatterer:

$$1/G = \frac{h}{2e^2} \frac{1}{M\bar{T}} = \frac{h}{2e^2} \frac{1}{M} + \frac{h}{2e^2} \frac{1}{M} \frac{1-\bar{T}}{\bar{T}}$$

• how about a conductor containing 2 scatterers?

- probability of a particle passing through both scatterers (x) $\bar{T}_1 \bar{T}_2$ (o) $\bar{T}_{12} = \bar{T}_1 \bar{T}_2 + \bar{T}_1 R_2 R_1 \bar{T}_2 + \bar{T}_1 R_2 R_1 R_2 R_1 \bar{T}_2 + \cdots$ $= \bar{T}_1 \bar{T}_2 + \bar{T}_1 \bar{T}_2 R_1 R_2 + \bar{T}_1 \bar{T}_2 R_1^2 R_2^2 + \cdots = \bar{T}_1 \bar{T}_2 \frac{1}{1 - R_1 R_2}$ (incoherently) $\Rightarrow \frac{1 - \bar{T}_{12}}{\bar{T}_{12}} = \frac{1 - \bar{T}_1}{\bar{T}_1} + \frac{1 - \bar{T}_2}{\bar{T}_2}$
- total resistance of a conductor with 2 scatterers: $1/G = \frac{h}{2e^2} \frac{1}{M} + \frac{h}{2e^2} \frac{1}{M} \frac{1-\overline{T}_1}{\overline{T}_1} + \frac{h}{2e^2} \frac{1}{M} \frac{1-\overline{T}_2}{\overline{T}_2}$

Recovering Ohm's scaling for a long conductor

• resistance of a *M*-channel conductor with a scatterer:

$$R = \frac{h}{2e^2} \frac{1}{M} + \frac{h}{2e^2} \frac{1}{M} \frac{1 - \bar{T}}{\bar{T}}$$

• for 2 scatterers:

resist

$$R = \frac{h}{2e^2} \frac{1}{M} + \frac{h}{2e^2} \frac{1}{M} \frac{1 - \overline{T}_1}{\overline{T}_1} + \frac{h}{2e^2} \frac{1}{M} \frac{1 - \overline{T}_2}{\overline{T}_2}$$

• for a long conductor with many scatterers:

$$1/G = \frac{h}{2e^2} \frac{1}{M} + \frac{h}{2e^2} \frac{1}{M} \sum_{n=1}^{\infty} \frac{1-\bar{T}_n}{\bar{T}_n}$$

• assuming N scatterers with the same transmission coefficient $\overline{T}_n \to \overline{T}_1$:

$$\frac{1-\overline{T}_N}{\overline{T}_N} = \sum_n \frac{1-\overline{T}_n}{\overline{T}_n} \to N \frac{1-\overline{T}_1}{\overline{T}_1} \quad \Rightarrow \overline{T}_N = \frac{\overline{T}_1}{N(1-\overline{T}_1)+\overline{T}_1} \to \frac{L_0}{L+L_0}$$

ance of a long conductor with many scatterers: $R \propto \frac{h}{2e^2} \frac{1}{M} \frac{1}{\overline{T}_N} \propto \frac{L}{W}$

Effects of disorder on transport

- in realistic systems, disorder or charge impurities are (omni)present
- they induce a random potential

 $V_{\text{dis}}(x) = \sum_{q} V_{\text{dis},q} e^{iqx}$, $V_{\text{dis},q}$: Fourier component of the potential

• coupling to charge density $\rho = \sum_{\sigma} \psi_{\sigma}^{\dagger} \psi_{\sigma}$ with the electron field operator

$$\psi_{\sigma} \approx e^{ik_F x} R_{\sigma} + e^{-ik_F x} L_{\sigma}$$

• entering the Hamiltonian as a perturbation term:

$$H_{\rm dis} = \int dx \, V_{\rm dis}(x) \, \rho(x)$$

= $\int dx \, V_{\rm dis}(x) \, (R_{\sigma}^{\dagger}R_{\sigma} + L_{\sigma}^{\dagger}L_{\sigma} + e^{-2ik_F x} R_{\sigma}^{\dagger}L_{\sigma} + e^{2ik_F x} L_{\sigma}^{\dagger} R_{\sigma})$

⇒ forward scattering of electrons: $R_{\sigma}^{\dagger}R_{\sigma}$, $L_{\sigma}^{\dagger}L_{\sigma}$ (transmission in "wave description") backscattering: $R_{\sigma}^{\dagger}L_{\sigma}$, $L_{\sigma}^{\dagger}R_{\sigma}$ with scattering strength depending on $V_{\text{dis},2k_{F}}$ (reflection)

Microscopic origin of electrical resistance

• backscattering $(R_{\sigma}^{\dagger}L_{\sigma}, L_{\sigma}^{\dagger}R_{\sigma})$ in momentum space:

- disorder-induced backscattering in 1D channels
 ⇒ origins of electrical resistance and dissipation in electronic devices
- at low T: Anderson localization of carriers in a long conductor
 - exception: edge transport in quantum Hall states (topological protection)
 ⇒ remarkable quantization of conductance as a new standard of basic unit von Klitzing, Annu. Rev. Condens. Matter Phys. 8, 13 (2017)

Büttiker formula

• extending the 2-terminal formula to multiterminal devices:

$$I = \frac{2e}{h}\overline{T}(\mu_1 - \mu_2)$$

$$\rightarrow I_i = \frac{2e}{h}\sum_j (\overline{T}_{j\leftarrow i} \ \mu_i - \overline{T}_{i\leftarrow j} \ \mu_j)$$

- I_i : net current flowing out of the terminal i
- $\overline{T}_{j \leftarrow i}$: electron transferred from terminal *i* to *j*
- relating the multiterminal conductance of a mesoscopic conductor to its scattering properties (recall the introduced scattering matrix)
- without asking underlying scattering mechanism(s)

Büttiker formula

• at low *T*, for multiterminal devices:

$$I_i = \frac{2e}{h} \sum_j (\bar{T}_{j \leftarrow i} \ \mu_i - \bar{T}_{i \leftarrow j} \ \mu_j)$$

• local chemical potential set by voltages:

$$I_i = \sum_j (G_{ji}V_i - G_{ij}V_j)$$
 with $G_{ij} = \frac{2e^2}{h}\overline{T}_{i\leftarrow j}$ [note] typo before Eq. (6.71)

- simplified with a sum rule: $\sum_{j} G_{ji} = \sum_{j} G_{ij}$ (to ensure zero current for identical V_j) $\Rightarrow I_i = \sum_{i} G_{ij}(V_i - V_j)$
- description in terms of measured current and voltage without involving underlying microscopic transmission or scattering mechanism(s)

Application of the Büttiker formula

- making use of $I_i = \sum_j G_{ij}(V_i V_j)$ at low T
 - simplified by setting one of the voltages to zero
 - simplified further with the Kirchhoff's law: $\sum_{j} I_{j} = 0$
- 3-terminal device as an example:
 - Q: given an external current I flowing from 3 to 1, measuring V between probes 2 & 3, what is the resistance V/I?
- from Büttiker formula:

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} G_{12} + G_{13} & -G_{12} & -G_{13} \\ -G_{21} & G_{21} + G_{23} & -G_{23} \\ -G_{31} & -G_{32} & G_{31} + G_{32} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$$

• let $V_3 = 0$, and we know I_3 from $I_1 + I_2 + I_3 = 0$:

$$\begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} G_{12} + G_{13} & -G_{12} \\ -G_{21} & G_{21} + G_{23} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

3-terminal device

Q: what is the resistance V/I?

• inverting the matrix equation:

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \mathbf{R} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} G_{12} + G_{13} & -G_{12} \\ -G_{21} & G_{21} + G_{23} \end{pmatrix}^{-1} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$

- the matrix can be inverted straightforwardly
- expressing V_1, V_2 in terms of matrix elements of **R** and I_1, I_2 :

$$V_1 = R_{11}I_1 + R_{12}I_2$$
, $V_2 = R_{21}I_1 + R_{22}I_2$

• V/I in terms of matrix element(s) of **R** (which can be expressed in terms of G_{ij}):

$$\frac{V}{I} = \frac{-V_2}{-I_1}\Big|_{I_2=0} = R_{21}$$

4-terminal device

- Q: given external current I from 4 to 1, measuring V between probes 2 & 3, what is the 4-terminal resistance V/I ?
- again, we have freedom to set $V_4 = 0$, and we know $I_4 = -(I_1 + I_2 + I_3)$: $\begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} G_{12} + G_{13} & -G_{12} \\ -G_{21} & G_{21} + G_{23} \\ -G_{31} & -G_{32} \end{pmatrix}$

$$\begin{array}{c} -G_{13} \\ -G_{23} \\ G_{31} + G_{32} \end{array} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} \rightarrow \mathbf{R}^{-1} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$$

• V/I in terms of matrix element of **R** :

$$\frac{V}{I} = \frac{V_3 - V_2}{-I_1} \Big|_{I_2 = I_3 = 0} = R_{21} - R_3$$

Edge conduction in quantum Hall states

• 6-terminal device in a quantum Hall state with M edge modes

• since the bulk is gapped, only (gapless) edge modes can carry current:

 $G_{ij} = \frac{2e^2}{h}M, \text{ for } (i \leftarrow j) = (1 \leftarrow 6), (2 \leftarrow 1), (3 \leftarrow 2), (4 \leftarrow 3), (5 \leftarrow 4), (6 \leftarrow 5)$ $G_{ij} = 0, \text{ otherwise}$

 \Rightarrow simplifying the conductance matrix in $I_i = \sum_j G_{ij}(V_i - V_j)$

Edge conduction

 $I_i = \sum_i G_{ii} (V_i - V_i)$

• we set
$$V_4 = 0$$
:

$$\begin{pmatrix}
I_1 \\
I_2 \\
I_3 \\
I_5 \\
I_6
\end{pmatrix} = \begin{pmatrix}
G_c & 0 & 0 & 0 & -G_c \\
-G_c & G_c & 0 & 0 & 0 \\
0 & -G_c & G_c & 0 & 0 \\
0 & 0 & 0 & G_c & 0 \\
0 & 0 & 0 & -G_c & G_c
\end{pmatrix}
\begin{pmatrix}
V_1 \\
V_2 \\
V_3 \\
V_5 \\
V_6
\end{pmatrix}, \quad G_c = \frac{2e^2}{h}M_c$$

- inverting the matrix could give solutions, but it is unnecessary
- we note that currents at the voltage terminals are zero: $I_2=I_3=I_4=I_5=0$

$$\Rightarrow V_2 = V_3 = V_1, V_5 = V_6 = 0, I_1 = G_c V_1$$

- longitudinal resistance: $R_L = \frac{V_2 V_3}{I_1} = \frac{V_6 V_5}{I_1} = 0$, transport without dissipation!
- Hall resistance: $R_H = \frac{V_2 V_6}{I_1} = \frac{V_3 V_5}{I_1} = \frac{h}{2e^2 M}$, experimentally very precise!

Outline

- Review of useful concepts from quantum mechanics
- Quantum transport in mesoscopic systems
 - Landauer-Büttiker formalism (single-particle description)
 - conductance quantization in ballistic systems
 - Landauer formula for an imperfect conductor
 - Büttiker formula for multiterminal devices
 - application
 - interacting systems (beyond single-particle regime)
 - interacting electrons in 1D: Tomonaga-Luttinger liquid
 - impurities (weak and strong)
 - effects of spin-orbit-coupling

Incorporating electron-electron (e-e) interaction in 1D

• only electrons near the Fermi level participates in transport:

 $\psi \approx e^{ik_F x}R + e^{-ik_F x}L$ (spinless for simplicity)

• effective theory in a 1D channel:

 $H_{\rm kin} + H_{\rm int}$

• kinetic energy (linearized spectrum):

$$H_{\rm kin} + H_{\rm int} = -i\hbar v_F \int dx \left(R^{\dagger} \partial_x R - L^{\dagger} \partial_x L \right)$$

• (screened) Coulomb interaction between electrons

$$H_{\text{int}} = \int dx \, V_{\text{ee}}(x) \, \rho(x) \rho(x) \approx \int dx \left\{ g_2 \left(R^{\dagger} R L^{\dagger} L \right) + \frac{g_4}{2} \left[\left(R^{\dagger} R \right)^2 + \left(L^{\dagger} L \right)^2 \right] \right\}$$

going beyond the single-particle regime => cannot be diagonalized!

Tomonaga-Luttinger liquid (TLL or LL)

• bosonization of the right- and left-moving electrons

$$R = \frac{U_R}{\sqrt{2\pi a}} e^{i[-\phi(x)+\theta(x)]}, L = \frac{U_L}{\sqrt{2\pi a}} e^{i[\phi(x)+\theta(x)]}$$

• ϕ , θ : bosonic fields fulfilling the commutation relation:

$$[\phi(x), \theta(x')] = \frac{i\pi}{2} \operatorname{sign}(x' - x)$$

• effective theory (mapping interacting fermions to free bosons)

$$H_{\rm kin} + H_{\rm int} = \frac{\hbar u}{2\pi} \int dx \left[\frac{1}{\kappa} (\partial_x \phi)^2 + K (\partial_x \theta)^2 \right], \quad K \equiv \left(\frac{2\pi \hbar v_F + g_4 - g_2}{2\pi \hbar v_F + g_4 + g_2} \right)^{\frac{1}{2}}$$

- quadratic Hamiltonian ⇒ using TLL model to compute physical quantities (not here)
- interaction strength encoded in the parameter K
 - K = 1 : free fermions (i.e., Fermi liquid = FL)
 - K < 1 (K > 1): repulsive (attractive) interaction

Transport in clean 1D interacting systems

• clean wires connected to leads: ballistic conductance $G = \frac{2e^2}{h} \times K^L$

Maslov and Stone, PRB 52, R5539 (1995); Ponomarenko, PRB 52, R8666 (1995); Safi and Schulz, PRB 52, R17040 (1995)

- physical meaning of contact resistance (from the last section):
 - from the process where electron wave packet from 3D reservoir gets back scattered when trying to enter the narrow conduction modes in a Q1D conductor
 - **no information** about *e-e* interaction within the conductor!
- Q: can there still be transport features coming from *e-e* interaction in the conductor? Yes! we need some backscattering within the conductor

Effects of impurities in 1D

- different modeling according to their strength and positions
- strong impurities:

acting as tunnel barriers, either at the boundary or inside the conductor

- barrier between LL wire and LL wire or between LL and FL lead
- weak impurities:

acting as a potential perturbation

Impurities as tunnel barriers

• current through tunneling: $H_{tun} = -t_{tun} \int dx \, \delta(x) \, \psi_{<}^{\dagger}(x) \, \psi_{>}(x) + h.c.$

$$\frac{dI_{\text{tun}}}{dV} \propto \begin{cases} V^{\frac{1}{K}-1} \text{ (boundary barrier)} \\ V^{\frac{2}{K}-2} \text{ (interior barrier)} \end{cases}$$

- power-law (differential) conductance with an exponent depending on impurity position and interaction strength (*K*=1 gives linear response for FL) Kane and Fisher, PRB 46, 15233 (1992)
- universal scaling formula for temperature T and bias V:
 - observed in carbon nanotubes Bockrath et al., Nature 397, 598 (1999) $I = I_0 T^{1+\alpha} \sinh\left(\frac{\gamma eV}{2k_{\rm B}T}\right) \left|\Gamma\left(1 + \frac{\alpha}{2} + \frac{i\gamma eV}{2\pi k_{\rm B}T}\right)\right|^2$

Universal scaling behavior in transport

$$I = I_0 T^{1+\alpha} \sinh\left(\frac{\gamma eV}{2k_{\rm B}T}\right) \left|\Gamma\left(1+\frac{\alpha}{2}+\frac{i\gamma eV}{2\pi k_{\rm B}T}\right)\right|^2$$

- *I-V* curves at different *T* collapse onto a single curve upon rescaling
- observation in InAs nanowires

Sato et al., PRB 99, 155304 (2019)

Impurities as potential perturbation

- isolated impurity at x = 0:
 - $H_{\rm imp} = V_0 \int dx \, \delta(x) \, \rho(x)$

backscattering caused by impurities: conductance correction

$$G = \frac{e^2}{h} + \delta G$$
 with $\delta G < 0$ and $|\delta G| \propto V^{2-2K}$ or $|\delta G| \propto T^{2-2K}$

• power-law correction with a scaling exponent

Kane and Fisher, PRB 46, 15233 (1992)

• uniform reduction of conductance in GaAs wires

Tarucha et al., Sol. State. Commun. 94, 413 (1995)

General transport features in interacting systems

- backscattering effect enhanced by e-e interaction
 - deviation from ballistic conductance increases with interaction strength
 - $K \rightarrow 1$: usual formula for noninteracting systems (Fermi liquid)
- transport features for Tomonaga-Luttinger liquid
 - universal scaling formula
 - power-law conductance (correction)
 - interaction strength in nanodevices deduced from measurements
- Anderson localization by potential disorder:

$$H_{\rm dis} = \int dx \, V_{\rm dis}(x) \, \rho(x)$$

e-e interaction enhances the tendency towards localization in 1D, with higher localization temperature and shorter localization length Giamarchi et al., PRB 37, 325 (1988)

Effects of spin-orbit coupling (SOC)

- Rashba SOC term in 1D semiconductors: $H_{R,1D} = \alpha_R \sigma^y k_x$:
 - linear-in-momentum term can be gauged away in strict 1D

- ⇒ no spin-orbit effects on charge transport Braunecker et al., PRB 82, 045127 (2010)
- no interaction effect in 1D clean systems

Maslov and Stone, PRB 52, R5539 (1995); Ponomarenko, PRB 52, R8666 (1995); Safi and Schulz, PRB 52, R17040 (1995)

- finite width of realistic wires: higher transverse subbands in Q1D
 ⇒ unlike strict 1D, SOC cannot be completely removed
- disorder or charge impurities in realistic wires

Spin-orbit effects on energy spectrum in Q1D wires

• Q1D wires || x with transverse subband index *n*:

$$H = \frac{\hbar^2 k_x^2}{2m} + \hbar\omega (n + \frac{1}{2}) + H_{\rm R}$$

• Rashba SOC term:

$$H_{\rm R} = \alpha_R (\sigma^y k_x - \sigma^x k_y)$$

- $\sigma^y k_x$ term: shifting parabolic dispersion by $k_{so} = m |\alpha_R| / \hbar^2$
- $\sigma^{x}k_{y}$ term: mixing opposite spin states of neighboring subbands $|n\rangle = |0\rangle, |1\rangle$

 \Rightarrow band distortion $\delta v = v_A - v_B$ and mixing of up- and down-spins

Spectrum and spin orientation of a SOC wire

- SOC admixes the opposite spin states of neighboring subbands
 - band distortion $\delta v = v_A v_B$: distinct Fermi velocities of the two branches
 - spin orientation of electrons depends on chemical potential μ

• Backscattering on charge impurities between right- and left- movers: $P_{AB} = |\langle R_A | L_B \rangle| = |\langle R_B | L_A \rangle|$

Interacting 1D channel with spin

- low T: only electrons near Fermi level matter: $\psi_{\sigma} \approx e^{ik_F x} R_{\sigma} + e^{-ik_F x} L_{\sigma}$
- kinetic energy (linearized):

$$H_{\rm kin} = -i \, \hbar v_F \sum_{\sigma} \int dx \, (R_{\sigma}^{\dagger} \, \partial_x \, R_{\sigma} \, - \, L_{\sigma}^{\dagger} \, \partial_x \, L_{\sigma})$$

• *e-e* interaction:

$$H_{\rm int} = \int dx \, V_{\rm ee}(x) \, \rho(x) \rho(x) \approx \sum_{\sigma} V_{\rm ee,0} \int dx \, \left\{ R_{\sigma}^{\dagger} R_{\sigma} L_{\sigma}^{\dagger} L_{\sigma} + \frac{1}{2} \left[\left(R_{\sigma}^{\dagger} R_{\sigma} \right)^2 + \left(L_{\sigma}^{\dagger} L_{\sigma} \right)^2 \right] \right\}$$

• bosonization:

$$R_{\sigma} = \frac{U_{R\sigma}}{\sqrt{2\pi a}} e^{i[-\phi_c(x) + \theta_c(x) - \sigma\phi_s(x) + \sigma\theta_s(x)]/\sqrt{2}}, L_{\sigma} = \frac{U_{R\sigma}}{\sqrt{2\pi a}} e^{i[\phi_c(x) + \theta_c(x) + \sigma\phi_s(x) + \sigma\theta_s(x)]/\sqrt{2}}$$

• spinful (Tomonaga-)Luttinger liquid with two charge (c) and spin (s) sectors

$$H_{\rm kin} + H_{\rm int} = \sum_{\nu=c,s} \int \frac{\hbar dx}{2\pi} \left\{ u_{\nu} K_{\nu} [\partial_x \theta_{\nu}]^2 + \frac{u_{\nu}}{K_{\nu}} [\partial_x \phi_{\nu}]^2 \right\}$$

• charge-spin separation in usual 1D wires (negligible spin-orbit coupling)

47

Spin-orbit effects on Q1D wires

• Q1D + SOC: band distortion

⇒ causing a charge-spin mixing term in the Hamiltonian

$$H_{\rm so} = \delta v \int \frac{\hbar dx}{2\pi} \{ [\partial_x \phi_c(x)] [\partial_x \theta_s(x)] + [\partial_x \phi_s(x)] [\partial_x \theta_c(x)] \}$$

• Q1D + SOC + impurities: new transport features

⇒ power-law conductance and universal scaling formula with scaling exponents depending on *e-e* interaction and spin-orbit-induced band distortion

Sato et al., PRB 99, 155304 (2019); Hsu et al., PRB 100, 195423 (2019)

if time permits ...

Quantum spin Hall insulator (QSHI) and edge states

Hsu et al., SST 36, 123003 (2021)

- also called two-dimensional topological insulator (2DTI)
- gapless edge states protected by the bulk topology
- helical nature: spin-momentum locking
- interacting electrons in one dimension

Interacting electrons in 1D edge channels

• effective theory for electrons in a helical edge (coordinate r):

$$H_{\rm hel} = H_{\rm kin} + H_{\rm ee}$$

• kinetic energy

$$H_{\rm kin} = -i\hbar v_F \int dr \left(R^{\dagger} \partial_r R - L^{\dagger} \partial_r L \right)$$

• (screened) Coulomb interaction between electrons

$$H_{\rm ee} = g_2 \int dr R^{\dagger} R L^{\dagger} L + \frac{g_4}{2} \int dr \left[\left(R^{\dagger} R \right)^2 + \left(L^{\dagger} L \right)^2 \right]$$

Helical Tomonaga-Luttinger liquid (hTLL)

effective edge theory

$$H_{\text{hel}} = \frac{\hbar u}{2\pi} \int dr \left[\frac{1}{K} \left(\partial_r \phi \right)^2 + K \left(\partial_r \theta \right)^2 \right] \quad K \equiv \left(\frac{2\pi \hbar v_F + g_4 - g_2}{2\pi \hbar v_F + g_4 + g_2} \right)^{\frac{1}{2}}$$

bosonization of the right- and left-moving edge modes

$$R_{\downarrow} = \frac{U_R}{\sqrt{2\pi a}} e^{ik_F r} e^{i[-\phi(r)+\theta(r)]},$$
$$L_{\uparrow} = \frac{U_L}{\sqrt{2\pi a}} e^{-ik_F r} e^{i[\phi(r)+\theta(r)]}.$$

- interaction strength encoded in the parameter K (K=1: no interaction)
- how to extract its value from a real sample?

Spectroscopic signatures: local density of states (DOS)

• local DOS as functions of T and $\epsilon = E - E_F$

$$\rho_{\mathrm{TLL}}(\epsilon, T) \propto T^{\alpha} \cosh\left(\frac{\epsilon}{2k_{B}T}\right) \left|\Gamma\left(\frac{1+\alpha}{2} + i\frac{\epsilon}{2\pi k_{B}T}\right)\right|^{2}$$

Bockrath et al., Nature 397, 598 (1999)

- ρ_{TLL}/T^{α} depends only on the ratio of ϵ/T for any ϵ and T \Rightarrow universal scaling behavior
- the exponent α depends on the interaction strength
- for a helical edge, $\alpha = (K + 1/K 2)/2$

 \Rightarrow stronger interaction gives smaller *K* and larger α

Experimental observations

local DOS of the edge mode

$$T^{\alpha} \cosh\left(\frac{\epsilon}{2k_BT}\right) \left| \Gamma\left(\frac{1+\alpha}{2} + i\frac{\epsilon}{2\pi k_BT}\right) \right|^2$$

Stühler et al., Nat. Phys. 16, 47 (2019)

asymptotic behavior

$$-\rho \propto |\epsilon|^{\alpha}$$
 for $|\epsilon| \equiv |E - E_F| \gg k_B T$
- $\rho \propto T^{\alpha}$ for $|\epsilon| \ll k_B T$

- local DOS at the edge
 - universal scaling behavior
 - the fitted parameter value is consistent with the estimated value $K \approx 0.4$ -0.6
- spectroscopic feature for helical liquids in QSHI
- how about transport?

b

Edge transport in QSHI

- R_{\downarrow} and L_{\uparrow} in helical channels: spin flip necessary for elastic backscattering $R_{\downarrow} \leftrightarrow L_{\uparrow}$
- Charge impurities:

creating potential disorder $V_{
m dis}$ but *no spin flip*: $\langle L_{\uparrow}|V_{
m dis}|R_{\downarrow}
angle=0$

 \Rightarrow (naive) expectation: no edge resistance

• Transport signature when the chemical potential μ is in the bulk gap Δ_b \Rightarrow quantized edge conductance at e^2/h

HgTe/CdTe

Theory: B. A. Bernevig et al. Science 314, 1757 (2006) Bulk energy bands of CdTe/HgTe/CdTe quantum well

2-terminal measurement gives $G_{LR} = 2e^2/h$ in the topological regime, and $G_{LR} = 0$ in the trivial regime

Experiment: M. König et al. Science 318, 766 (2007).

Longitudinal resistance of normal (I) and inverted (II, III, and IV) regimes as a function of the gate voltage at T = 30 mK device sizes:

20 x 13.3 μm^2 (I and II), 1.0 x 1.0 μm^2 (III), and 1.0 x 0.5 μm^2 (IV)

InAs/GaSb

Experiment: I. Knez et al., PRL 107, 136603 (2011)

Longitudinal resistance of InAs/GaSb QW as a function of the gate voltage for various edge lengths at T = 300 mK

- theory: quantized edge conductance
- experiments did not agree!

Finite edge resistance in realistic samples

- experiments:
 - no robustly quantized conductance in larger samples
 - presence of backscattering and resistance sources

HgTe Olshanetsky et al., PRL 114, 126802 (2015) and InAs/GaSb Mueller et al., PRB 96, 075406 (2017)

- various backscattering mechanisms were proposed:
 - *e-e* interaction, SOC, noise, phonons, charge puddles, magnetic impurities, ...
- time-reversal-invariant (inelastic) or time-reversal-symmetry breaking mechanisms

Time-reversal-symmetry breaking mechanisms

TRS breaking mechanism	$R \text{ or } -\delta G$	Remark
Single magnetic impurity	$\begin{cases} T^{2K-2} & \text{for } T \ll T_{\rm K} \\ \text{const.} + \ln \left(\frac{\Delta_{\rm b}}{k_{\rm B}T}\right) & \text{for } T > T_{\rm K} \end{cases}$	
Single charge impurity (with a finite magnetic field)	T^{2K-2}	
Kondo lattice (1D Kondo array)	$\begin{cases} T^{-2} & \text{for } E_{\text{pin}} < k_{\text{B}}T \ll \Delta_{\text{ka}}, \\ T^{2K-2} & \text{for } k_{\text{B}}T > \Delta_{\text{ka}} \end{cases}$	Localization at low T
Magnetic-impurity ensemble (with spin diffusion into the bulk)	$\begin{cases} e^{\Delta_{\rm rs}/(k_{\rm B}T)} & \text{for } T < T_{\rm rs} \\ T^{2K-2} & \text{for } T > T_{\rm rs} \end{cases}$	Localization for $K < 3/2$
Spiral-order-induced field (below spiral ordering T_s) Magnon	$\begin{cases} m_{\rm s}^2 e^{\Delta_{\rm sa}/(k_{\rm B}T)} & \text{for } T < T_{\rm sa} \\ m_{\rm s}^2 T^{2K-2} & \text{for } T > T_{\rm sa} \\ \int \omega_{\rm m}^{2K-3} & \text{for magnon emission} \\ m_{\rm s}^{2} \sigma_{\rm sa}^{2K-2K} & \text{for magnon emission} \end{cases}$	Localization for $K < 3/2$
(below spiral ordering $T_{\rm s}$)	$(T^{3-2K}$ for magnon absorption	
DNP ^f (for $K \approx 1$ and finite spin-flip rate)	$(T + \text{const.})^{-1}$	
DNP with random SOI ^g (for $K \approx 1$ and long channels)	$T^{-2/3}$	

Hsu et al., SST 36, 123003 (2021)

Time-reversal-invariant mechanisms

TRS preserving mechanism	$R \text{ or } -\delta G$		Reference	Notation or name in the original work
1PB by $H_{ee,5}$ (for clean systems)	$\begin{cases} e^{-\hbar v_F k_F / (k_{\rm B}T)} & \text{for } k_{\rm B}T \ll \hbar v_F k_F \\ T^{2K+3} & \text{for } k_{\rm B}T \gg \hbar v_F k_F \\ T^{2K+2} & T^{2K+2} \\ T^6 & \text{for } K \approx 1 \\ T^4 & \text{for } K \approx 1 \\ T^8 & \text{for } K \approx 1 \\ T^{8K-2} & \text{Localization for } K < 3/8. \end{cases}$		Kainaris et al (2014)	$g_1 \times b$ process
(i) Crean systems) 1PB by $H_{ee,5} \& H_{imp,f}$ 1PB by $H_{ee,5} \& H_{imp}^{loc}$ 1PB by $H_{ee,1} \& H_{imp,b}$ 1PD b $H_{ee,1} \& H_{imp,b}$			Wu <i>et al</i> (2006) Xu and Moore (2006) Kainaris <i>et al</i> (2014)	$H_{\rm dis}$ or two-particle backscattering due to quenched disorder Scattering by spatially random quenched impurities $g_3 \times f$ process (in their class of two-particle processes)
$\begin{array}{l} \text{2PB by } H_{\text{ee},3} \& H_{\text{imp,b}} \\ \text{2PB by } H_{\text{ee},3} \& H_{\text{imp}} \\ \text{2PB by } H_{\text{ee},3} \& H_{\text{imp}} \\ \end{array}$			Schmidt <i>et al</i> (2012) Kainaris <i>et al</i> (2014)	$H_{V,\text{int}}^{\text{eff}}$ $g_3 \times b$ process (in their class of one-particle processes)
Random SOI	0		Wu et al (2006)	$H'_{\rm bs}$ or impurity-induced two-particle correlated backscattering
Higher-order random SOI	For $K > 1/2$: $\begin{cases} T^{4K} \text{ for } T < T^*_{\text{rso}} \\ T^{4K} \ln^2(k_{\text{B}}T/\Delta_{\text{b}}) \text{ for } T > T^*_{\text{rso}} \end{cases}$		Maciejko <i>et al</i> (2009) Lezmy <i>et al</i> (2012)	H_2 or local impurity-induced two-particle backscattering g_{2p} process or two-particle scattering
(single scatterer)	$ \begin{array}{l} \mbox{For $1/4 < K < 1/2$:} \\ \left\{ \begin{array}{l} T^{8K-2} \mbox{ for $T < T^*_{\rm rso}$} \\ T^{4K} \ln^2(k_{\rm B}T/\Delta_{\rm b}) \mbox{ for T} \end{array} \right. \end{array} $	$> T^*_{ m rso}$	Schmidt <i>et al</i> (2012) - Kainaris <i>et al</i> (2014) Chou <i>et al</i> (2015)	$H_{\rm int}$ or inelastic backscattering of a single electron with energy transfer to another particle-hole pair g_5 process \hat{H}_W or one-particle spin-flip umklapp term
1PB in charge puddles (for $K \approx 1$) Lor	$\begin{array}{l} \text{even valley:} & \left\{ \begin{matrix} T^4 & \text{for } k_{\text{B}}T \\ T^2 & \text{for } \delta_{\text{d}} \ll \\ \text{const. for } k_{\text{B}}T \\ \text{const. for } k_{\text{B}}T \\ \text{transition:} \end{matrix} \right. \\ \left\{ \begin{matrix} T^4 & \text{for } k_{\text{B}}T \\ \text{const. for } \Gamma_{\text{t}} \ll \\ T^2 & \text{for } \delta_{\text{d}} \ll \\ \text{const. for } k_{\text{B}}T \\ T^4 & \text{for } k_{\text{B}}T \\ \text{const. for } k_{\text{B}}T \\ T^4 & \text{for } \ln^2(T/T_{\text{K}}) \text{ for } \\ T^2 & \text{for } n^2(T/T_{\text{K}}) \end{array} \right\} \\ \end{array}$	$ \begin{array}{ll} T^4 & \text{for } k_{\rm B}T \ll \delta_{\rm d} \\ T^2 & \text{for } \delta_{\rm d} \ll k_{\rm B}T \ll E_{\rm ch} \end{array} \end{array} $		
		const. for $k_{\rm B}T \gg E_{\rm ch}$ Γ^4 for $k_{\rm B}T \ll \Gamma_{\rm t}$ Kai const. for $\Gamma_{\rm t} \ll k_{\rm B}T \ll \delta_{\rm d}$ Che Γ^2 for $\delta_{\rm ch} = \delta_{\rm ch} = 0$	Kainaris <i>et al</i> (2014) Chou <i>et al</i> (2015)	$g_5 \times f$ process (in their class of one-particle processes) \hat{H}_W (same notation for clean and disordered systems)
		onst. for $k_{\rm B}T \gg E_{\rm ch}$	Kainaris et al (2014)	$g_5 \times b$ (in their class of one-particle processes)
		$ \begin{array}{l} T^4 & \text{for } T \ll T_{\rm K} \\ n^2(T/T_{\rm K}) & \text{for } k_{\rm B}T_{\rm K} \ll k_{\rm B}T \ll \delta_{\rm d} \\ T^2 & \text{for } \delta \ll k_{\rm B}T \ll F \end{array} $	Lezmy et al (2012)	gie process or inelastic scattering
	$E_{ch} \ll \delta_{d}: T \text{for } k_{B}T \ll \delta_{d}$ Long channel: $E_{ch} \approx \delta_{d}: 1/\ln^{2}[\delta_{d}/(k_{B}T)] \text{for } k_{B}T \ll \delta_{d}$ $E_{ch} \gg \delta_{d}: \frac{1}{\ln^{2}[\delta_{d}/(k_{B}T)]} \text{for } k_{B}T \ll \delta_{d}$ $E_{ch} \gg \delta_{d}: \frac{1}{\ln^{2}[\delta_{d}/(k_{B}T)]} \text{for } k_{B}T \ll \delta_{d}$		Ström <i>et al</i> (2010) Geissler <i>et al</i> (2014) Kainaris <i>et al</i> (2014) Xie <i>et al</i> (2016)	H_R or randomly fluctuating Rashba spin–orbit coupling Random Rashba spin–orbit coupling $g_{imp,b}$ process Random Rashba backscattering
			Kharitonov et al (2017)	\hat{H}_R or $U(1)$ -asymmetric single-particle backscattering field
Noise ^j (for $K \approx 1$, long channels)	Telegraph noise: $T^2 \tanh\left(\frac{2c_{\rm ch}}{2k_{\rm B}T}\right)$ $1/f$ noise: $\begin{cases} T^2 & \text{for } k_{\rm B}T \ll E_{\rm ch} \\ T & \text{for } k_{\rm B}T \ll E_{\rm ch} \end{cases}$		Crépin et al (2012)	Inelastic two-particle backscattering from a Rashba impurity
Acoustic longitudinal phonon	$(T \text{for } k_{\rm B}T \gg E_{\rm ch})$			
Transverse phonon (for $K \approx 1$)	Short channel: $\begin{cases} e^{-\hbar v_F k_F/(k_{\rm B}T)} & \text{for } k_{\rm B}T \ll \hbar c_{{\rm ph},t} k_F \\ \text{const. } T^3 + \text{const. } T^5 & \text{for } k_{\rm B}T \gg \hbar c_{{\rm ph},t} k_F \end{cases}$		Hsu et al., SST 36, 123003 (2021)	
	$ \text{Long channel:} \begin{cases} T^3 & \text{for } k_{\rm B}T \ll \hbar v_F k_F, \ k_{\rm B}\theta_{\rm I} \\ T^5 & \text{for } \hbar v_F k_F \ll k_{\rm B}T \ll k_{\rm B} \\ T & \text{for } k_{\rm B}T \gg k_{\rm B}\theta_{\rm D} \gg \hbar v_F \end{cases} $	$egin{array}{c} & & & & & & & & & & & & & & & & & & &$		